Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jan;40(1):105–109. doi: 10.1128/aac.40.1.105

Serum bactericidal activities and comparative pharmacokinetics of meropenem and imipenem-cilastatin.

M Dreetz 1, J Hamacher 1, J Eller 1, K Borner 1, P Koeppe 1, T Schaberg 1, H Lode 1
PMCID: PMC163066  PMID: 8787889

Abstract

The pharmacokinetics and serum bactericidal activities (SBAs) of imipenem and meropenem were investigated in a randomized crossover study. Twelve healthy male volunteers received a constant 30-min infusion of either 1 g of imipenem plus 1 g of cilastatin or 1 g of meropenem. The concentrations of the drugs in serum and urine were determined by bioassay and high-pressure liquid chromatography. Pharmacokinetic parameters were based on an open two-compartment model and a noncompartmental technique. At the end of infusion, the mean concentrations of imipenem and meropenem measured in serum were 61.2 +/- 9.8 and 51.6 +/- 6.5 mg/liter, respectively; urinary recoveries were 48.6% +/- 8.2% and 60.0% +/- 6.5% of the dose in 12 h, respectively; and the areas under the concentration-time curve from time zero to infinity were 96.1 +/- 14.4 and 70.5 +/- 10.3 mg.h/liter, respectively (P < or = 0.02). Imipenem had a mean half-life of 66.7 +/- 10.4 min; that of meropenem was 64.4 +/- 6.9 min. The volumes of distribution at steady state of imipenem and meropenem were 15.3 +/- 3.3 and 18.6 +/- 3.0 liters/70 kg, respectively, and the mean renal clearances per 1.73 m2 were 85.6 +/- 17.6 and 144.6 +/- 26.0 ml/min, respectively. Both antibiotics were well tolerated in this single-dose administration study. The SBAs were measured by the microdilution method of Reller and Stratton (L. B. Reller and C. W. Stratton, J. Infect. Dis. 136:196-204, 1977) against 40 clinically isolated strains. Mean reciprocal bactericidal titers were measured 1 and 6 h after administration. After 1 and 6 h the median SBAs for imipenem and meropenem, were 409 and 34.9 and 97.9 and 5.8, respectively, against Staphylococcus aureus, 19.9 and 4.4 and 19.4 and 4.8, respectively, against Pseudomonas aeruginosa, 34.3 and 2.2 and 232 and 15.5, respectively, against Enterobacter cloacae, and 13.4 and 2.25 and 90.7 and 7.9, respectively, against Proteus mirabilis. Both drugs had rather short biological elimination half-lives and a predominantly renal route of elimination. Both carbapenems revealed high SBAs against clinically important pathogens at 1 h; meropenem had a higher SBA against E. cloacae and P. mirabilis, and the SBA of imipenem against S. aureus was greater than the SBA of meropenem.

Full Text

The Full Text of this article is available as a PDF (278.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bax R. P., Bastain W., Featherstone A., Wilkinson D. M., Hutchison M., Haworth S. J. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):311–320. doi: 10.1093/jac/24.suppl_a.311. [DOI] [PubMed] [Google Scholar]
  2. Buckley M. M., Brogden R. N., Barradell L. B., Goa K. L. Imipenem/cilastatin. A reappraisal of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1992 Sep;44(3):408–444. doi: 10.2165/00003495-199244030-00008. [DOI] [PubMed] [Google Scholar]
  3. Burman L. A., Nilsson-Ehle I., Hutchison M., Haworth S. J., Norrby S. R. Pharmacokinetics of meropenem and its metabolite ICI 213,689 in healthy subjects with known renal metabolism of imipenem. J Antimicrob Chemother. 1991 Feb;27(2):219–224. doi: 10.1093/jac/27.2.219. [DOI] [PubMed] [Google Scholar]
  4. Calandra G. B., Ricci F. M., Wang C., Brown K. R. The efficacy results and safety profile of imipenem/cilastatin from the clinical research trials. J Clin Pharmacol. 1988 Feb;28(2):120–127. doi: 10.1002/j.1552-4604.1988.tb05735.x. [DOI] [PubMed] [Google Scholar]
  5. Clissold S. P., Todd P. A., Campoli-Richards D. M. Imipenem/cilastatin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1987 Mar;33(3):183–241. doi: 10.2165/00003495-198733030-00001. [DOI] [PubMed] [Google Scholar]
  6. Duque A., Altimiras J., García-Cases C., Vidal P. Vertigo caused by intravenous imipenem/cilastatin. DICP. 1991 Sep;25(9):1009–1009. doi: 10.1177/106002809102500920. [DOI] [PubMed] [Google Scholar]
  7. Fukuhara H., Kusano N., Nakamura H., Kaneshima H., Irabu Y., Shimozi K., Kitukawa K., Shigeno Y., Saito A., Kakazu T. [Clinical evaluation of imipenem/cilastatin sodium in the internal medicine]. Jpn J Antibiot. 1991 Aug;44(8):877–885. [PubMed] [Google Scholar]
  8. García-Rodríguez J. A., García Sánchez J. E., Muñoz Bellido J. L., García Sánchez E., García García M. I. In-vitro activity of meropenem, a new carbapenem, against imipenem-resistant Pseudomonas aeruginosa and Xanthomonas maltophilia. J Chemother. 1991 Jun;3(3):143–146. doi: 10.1080/1120009x.1991.11739081. [DOI] [PubMed] [Google Scholar]
  9. Greenblatt D. J., Koch-Weser J. Clinical pharmacokinetics (second of two parts). N Engl J Med. 1975 Nov 6;293(19):964–970. doi: 10.1056/NEJM197511062931905. [DOI] [PubMed] [Google Scholar]
  10. Harabe E., Kawai Y., Kanazawa K., Otsuki M., Nishino T. In vitro and in vivo antibacterial activities of meropenem, a new carbapenem antibiotic. Drugs Exp Clin Res. 1992;18(2):37–46. [PubMed] [Google Scholar]
  11. Harrison M. P., Haworth S. J., Moss S. R., Wilkinson D. M., Featherstone A. The disposition and metabolic fate of 14C-meropenem in man. Xenobiotica. 1993 Nov;23(11):1311–1323. doi: 10.3109/00498259309059441. [DOI] [PubMed] [Google Scholar]
  12. Kanellakopoulou K., Giamarellou H., Papadothomakos P., Tsipras H., Chloroyiannis J., Theakou R., Sfikakis P. Meropenem versus imipenem/cilastatin in the treatment of intraabdominal infections requiring surgery. Eur J Clin Microbiol Infect Dis. 1993 Jun;12(6):449–453. doi: 10.1007/BF01967440. [DOI] [PubMed] [Google Scholar]
  13. Kayser F. H., Morenzoni G., Strässle A., Hadorn K. Activity of meropenem, against gram-positive bacteria. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):101–112. doi: 10.1093/jac/24.suppl_a.101. [DOI] [PubMed] [Google Scholar]
  14. Klastersky J., Daneau D., Swings G., Weerts D. Antibacterial activity in serum and urine as a therapeutic guide in bacterial infections. J Infect Dis. 1974 Feb;129(2):187–193. doi: 10.1093/infdis/129.2.187. [DOI] [PubMed] [Google Scholar]
  15. Knothe H. Antibiotic usage for initial empirical treatment of infections in hospitalized patients in West Germany. Infection. 1991 May-Jun;19(3):127–130. doi: 10.1007/BF01643229. [DOI] [PubMed] [Google Scholar]
  16. Koeppe P., Hamann C. A program for non-linear regression analysis to be used on desk-top computers. Comput Programs Biomed. 1980 Dec;12(2-3):121–128. doi: 10.1016/0010-468x(80)90058-6. [DOI] [PubMed] [Google Scholar]
  17. Koeppe P., Höffler D. Die Verwendung eines Digitalrechners zur Entwicklung von Dosierungsempfehlungen für eine Therapie mit Antibiotika. Arzneimittelforschung. 1972 Feb;22(2):311–319. [PubMed] [Google Scholar]
  18. Loo J. C., Riegelman S. Assessment of pharmacokinetic constants from postinfusion blood curves obtained after I.V. infusion. J Pharm Sci. 1970 Jan;59(1):53–55. doi: 10.1002/jps.2600590107. [DOI] [PubMed] [Google Scholar]
  19. Murray P. R., Niles A. C. In vitro activity of meropenem (SM-7338), imipenem, and five other antibiotics against anaerobic clinical isolates. Diagn Microbiol Infect Dis. 1990 Jan-Feb;13(1):57–61. doi: 10.1016/0732-8893(90)90055-z. [DOI] [PubMed] [Google Scholar]
  20. Nilsson-Ehle I., Hutchison M., Haworth S. J., Norrby S. R. Pharmacokinetics of meropenem compared to imipenem-cilastatin in young, healthy males. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):85–88. doi: 10.1007/BF01964413. [DOI] [PubMed] [Google Scholar]
  21. Pien F. D., Vosti K. L. Variation in performance of the serum bactericidal test. Antimicrob Agents Chemother. 1974 Sep;6(3):330–333. doi: 10.1128/aac.6.3.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reller L. B., Stratton C. W. Serum dilution test for bactericidal activity. II. Standardization and correlation with antimicrobial assays and susceptibility tests. J Infect Dis. 1977 Aug;136(2):196–204. doi: 10.1093/infdis/136.2.196. [DOI] [PubMed] [Google Scholar]
  23. Reller L. B. The serum bactericidal test. Rev Infect Dis. 1986 Sep-Oct;8(5):803–808. doi: 10.1093/clinids/8.5.803. [DOI] [PubMed] [Google Scholar]
  24. Stratton C. W., Weinstein M. P., Reller L. B. Correlation of serum bactericidal activity with antimicrobial agent level and minimal bactericidal concentration. J Infect Dis. 1982 Feb;145(2):160–168. doi: 10.1093/infdis/145.2.160. [DOI] [PubMed] [Google Scholar]
  25. Wise R., Logan M., Cooper M., Ashby J. P., Andrews J. M. Meropenem pharmacokinetics and penetration into an inflammatory exudate. Antimicrob Agents Chemother. 1990 Aug;34(8):1515–1517. doi: 10.1128/aac.34.8.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wolfson J. S., Swartz M. N. Drug therapy. Serum bactericidal activity as a monitor of antibiotic therapy. N Engl J Med. 1985 Apr 11;312(15):968–975. doi: 10.1056/NEJM198504113121507. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES