Abstract
PR-39 is a proline-arginine-rich (PR) neutrophil antibacterial peptide originally identified and purified from the porcine small intestine. We report on the synthesis of a functional antibacterial domain of PR-39, the first 26 amino acid residues of the NH2 terminus. PR-26 was as potent as or more potent than PR-39 against enteric gram-negative bacteria. This truncated form of PR-39 potentiated neutrophil phagocytosis of Salmonella choleraesuis and decreased the level of S. typhimurium invasion into intestinal epithelial cells. Scanning electron microscopy confirmed that these peptides did not lyse cells by pore-forming mechanisms; however, they potentiated the antibacterial capabilities of a pore-forming peptide, magainin A. In addition, PR-26 was not toxic to epithelial cells at concentrations several times greater than its bactericidal concentration. These data suggest that PR-39 and its functional domain, PR-26, may potentiate the host's defense capabilities against gram-negative infections.
Full Text
The Full Text of this article is available as a PDF (676.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agerberth B., Lee J. Y., Bergman T., Carlquist M., Boman H. G., Mutt V., Jörnvall H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem. 1991 Dec 18;202(3):849–854. doi: 10.1111/j.1432-1033.1991.tb16442.x. [DOI] [PubMed] [Google Scholar]
- Amako K., Umeda A. Scanning electron microscopy of Staphylococcus. J Ultrastruct Res. 1977 Jan;58(1):34–40. doi: 10.1016/s0022-5320(77)80005-1. [DOI] [PubMed] [Google Scholar]
- Boman H. G., Agerberth B., Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993 Jul;61(7):2978–2984. doi: 10.1128/iai.61.7.2978-2984.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boman H. G. Antibacterial peptides: key components needed in immunity. Cell. 1991 Apr 19;65(2):205–207. doi: 10.1016/0092-8674(91)90154-q. [DOI] [PubMed] [Google Scholar]
- Cabiaux V., Agerberth B., Johansson J., Homblé F., Goormaghtigh E., Ruysschaert J. M. Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide. Eur J Biochem. 1994 Sep 15;224(3):1019–1027. doi: 10.1111/j.1432-1033.1994.01019.x. [DOI] [PubMed] [Google Scholar]
- Dinh T., Paulsen I. T., Saier M. H., Jr A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol. 1994 Jul;176(13):3825–3831. doi: 10.1128/jb.176.13.3825-3831.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duclohier H. Anion pores from magainins and related defensive peptides. Toxicology. 1994 Feb 28;87(1-3):175–188. doi: 10.1016/0300-483x(94)90160-0. [DOI] [PubMed] [Google Scholar]
- Gabay J. E. Ubiquitous natural antibiotics. Science. 1994 Apr 15;264(5157):373–374. doi: 10.1126/science.8153623. [DOI] [PubMed] [Google Scholar]
- Gallo R. L., Ono M., Povsic T., Page C., Eriksson E., Klagsbrun M., Bernfield M. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11035–11039. doi: 10.1073/pnas.91.23.11035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gennaro R., Skerlavaj B., Romeo D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun. 1989 Oct;57(10):3142–3146. doi: 10.1128/iai.57.10.3142-3146.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusters J. G., Mulders-Kremers G. A., van Doornik C. E., van der Zeijst B. A. Effects of multiplicity of infection, bacterial protein synthesis, and growth phase on adhesion to and invasion of human cell lines by Salmonella typhimurium. Infect Immun. 1993 Dec;61(12):5013–5020. doi: 10.1128/iai.61.12.5013-5020.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. Y., Boman A., Sun C. X., Andersson M., Jörnvall H., Mutt V., Boman H. G. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9159–9162. doi: 10.1073/pnas.86.23.9159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer R. I., Lichtenstein A. K., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–128. doi: 10.1146/annurev.iy.11.040193.000541. [DOI] [PubMed] [Google Scholar]
- Litteri L., Romeo D. Characterization of bovine neutrophil antibacterial polypeptides which bind to Escherichia coli. Infect Immun. 1993 Mar;61(3):966–969. doi: 10.1128/iai.61.3.966-969.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lleo M. M., Canepari P., Satta G. Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J Bacteriol. 1990 Jul;172(7):3758–3771. doi: 10.1128/jb.172.7.3758-3771.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorian V. Medical relevance of low concentrations of antibiotics. J Antimicrob Chemother. 1993 May;31 (Suppl 500):137–148. doi: 10.1093/jac/31.suppl_d.137. [DOI] [PubMed] [Google Scholar]
- MacKenzie F. M., Gould I. M. The post-antibiotic effect. J Antimicrob Chemother. 1993 Oct;32(4):519–537. doi: 10.1093/jac/32.4.519. [DOI] [PubMed] [Google Scholar]
- Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
- Moore K. S., Bevins C. L., Tomassini N., Huttner K. M., Sadler K., Moreira J. E., Reynolds J., Zasloff M. A novel peptide-producing cell in Xenopus: multinucleated gastric mucosal cell strikingly similar to the granular gland of the skin. J Histochem Cytochem. 1992 Mar;40(3):367–378. doi: 10.1177/40.3.1552176. [DOI] [PubMed] [Google Scholar]
- Pastor A., Pemán J., Cantón E. In-vitro postantibiotic effect of sparfloxacin and ciprofloxacin against Pseudomonas aeruginosa and Enterococcus faecalis. J Antimicrob Chemother. 1994 Nov;34(5):679–685. doi: 10.1093/jac/34.5.679. [DOI] [PubMed] [Google Scholar]
- Russell A. D. Potential sites of damage in micro-organisms exposed to chemical or physical agents. Soc Appl Bacteriol Symp Ser. 1984;(12):1–18. [PubMed] [Google Scholar]
- Satta G., Cornaglia G., Mazzariol A., Golini G., Valisena S., Fontana R. Target for bacteriostatic and bactericidal activities of beta-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins. Antimicrob Agents Chemother. 1995 Apr;39(4):812–818. doi: 10.1128/aac.39.4.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satta G., Fontana R., Canepari P. The two-competing site (TCS) model for cell shape regulation in bacteria: the envelope as an integration point for the regulatory circuits of essential physiological events. Adv Microb Physiol. 1994;36:181–245. doi: 10.1016/s0065-2911(08)60180-0. [DOI] [PubMed] [Google Scholar]
- Shi J., Goodband R. D., Chengappa M. M., Nelssen J. L., Tokach M. D., McVey D. S., Blecha F. Influence of interleukin-1 on neutrophil function and resistance to Streptococcus suis in neonatal pigs. J Leukoc Biol. 1994 Jul;56(1):88–94. doi: 10.1002/jlb.56.1.88. [DOI] [PubMed] [Google Scholar]
- Shi J., Ross C. R., Chengappa M. M., Blecha F. Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine. J Leukoc Biol. 1994 Dec;56(6):807–811. doi: 10.1002/jlb.56.6.807. [DOI] [PubMed] [Google Scholar]
- Smith A. W. Stationary phase induction in Escherichia coli--new targets for antimicrobial therapy? J Antimicrob Chemother. 1995 Mar;35(3):359–361. doi: 10.1093/jac/35.3.359. [DOI] [PubMed] [Google Scholar]
- Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
- Vogelman B. S., Craig W. A. Postantibiotic effects. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):37–46. doi: 10.1093/jac/15.suppl_a.37. [DOI] [PubMed] [Google Scholar]
- Zasloff M. Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol. 1992 Feb;4(1):3–7. doi: 10.1016/0952-7915(92)90115-u. [DOI] [PubMed] [Google Scholar]
- Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhanel G. G., Hoban D. J., Harding G. K. The postantibiotic effect: a review of in vitro and in vivo data. DICP. 1991 Feb;25(2):153–163. doi: 10.1177/106002809102500210. [DOI] [PubMed] [Google Scholar]