Abstract
Azoxybacilin, produced by Bacillus cereus, has a broad spectrum of antifungal activity in methionine-free medium and has been suggested to inhibit sulfite fixation. We have further investigated the mode of action by which azoxybacilin kills fungi. The compound inhibited the incorporation of [35S] sulfate into acid-insoluble fractions of Saccharomyces cerevisiae under conditions in which virtually no inhibition was observed for DNA, RNA, or protein synthesis. It did not interfere with the activity of the enzymes for sulfate assimilation but clearly inhibited the induction of those enzymes when S. cerevisiae cells were transferred from rich medium to a synthetic methionine-free medium. Particularly strong inhibition was observed in the induction of sulfite reductase. Northern (RNA) analysis revealed that azoxybacilin decreased the level of mRNA of genes for sulfate assimilation, including MET10 for sulfite reductase and MET4, the transactivator of MET10 and other sulfate assimilation genes. When activities of azoxybacilin were compared for mRNA and enzyme syntheses from MET10, the concentration required for inhibition of transcription of the gene was about 10 times higher (50% inhibitory concentration = 30 micrograms/ml) than that required for inhibition of induction of enzyme synthesis (50% inhibitory concentration = 3 micrograms/ml). The data suggest that azoxybacilin acts on at least two steps in the expression of sulfite reductase; the transcriptional activation of MET4 and a posttranscriptional regulation in MET10 expression. We conclude that azoxybacilin exhibits antifungal activity by interfering with the regulation of expression of sulfite reductase activity.
Full Text
The Full Text of this article is available as a PDF (334.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antoniewski J., Robichon-Szulmajster H. Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae. Biochimie. 1973 May;55(5):529–539. doi: 10.1016/s0300-9084(73)80413-4. [DOI] [PubMed] [Google Scholar]
- Aoki Y., Kondoh M., Nakamura M., Fujii T., Yamazaki T., Shimada H., Arisawa M. A new methionine antagonist that has antifungal activity: mode of action. J Antibiot (Tokyo) 1994 Aug;47(8):909–916. doi: 10.7164/antibiotics.47.909. [DOI] [PubMed] [Google Scholar]
- Aoki Y., Yamazaki T., Kondoh M., Sudoh Y., Nakayama N., Sekine Y., Shimada H., Arisawa M. A new series of natural antifungals that inhibit P450 lanosterol C-14 demethylase. II. Mode of action. J Antibiot (Tokyo) 1992 Feb;45(2):160–170. doi: 10.7164/antibiotics.45.160. [DOI] [PubMed] [Google Scholar]
- Botstein D., Falco S. C., Stewart S. E., Brennan M., Scherer S., Stinchcomb D. T., Struhl K., Davis R. W. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene. 1979 Dec;8(1):17–24. doi: 10.1016/0378-1119(79)90004-0. [DOI] [PubMed] [Google Scholar]
- Breton A., Surdin-Kerjan Y. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol. 1977 Oct;132(1):224–232. doi: 10.1128/jb.132.1.224-232.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherest H., Eichler F., Robichon-Szulmajster H. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Jan;97(1):328–336. doi: 10.1128/jb.97.1.328-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherest H., Surdin-Kerjan Y., Antoniewski J., Robichon-Szulmajster H. S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae. J Bacteriol. 1973 Jun;114(3):928–933. doi: 10.1128/jb.114.3.928-933.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherest H., Surdin-Kerjan Y., Robichon-Szulmajster H. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2. J Bacteriol. 1971 Jun;106(3):758–772. doi: 10.1128/jb.106.3.758-772.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferro A. J., Spence K. D. Induction and repression in the S-adenosylmethionine and methionine biosynthetic systems of Saccharomyces cerevisiae. J Bacteriol. 1973 Nov;116(2):812–817. doi: 10.1128/jb.116.2.812-817.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forlani N., Martegani E., Alberghina L. Posttranscriptional regulation of the expression of MET2 gene of Saccharomyces cerevisiae. Biochim Biophys Acta. 1991 May 2;1089(1):47–53. doi: 10.1016/0167-4781(91)90083-x. [DOI] [PubMed] [Google Scholar]
- Fujiu M., Sawairi S., Shimada H., Takaya H., Aoki Y., Okuda T., Yokose K. Azoxybacilin, a novel antifungal agent produced by Bacillus cereus NR2991. Production, isolation and structure elucidation. J Antibiot (Tokyo) 1994 Jul;47(7):833–835. doi: 10.7164/antibiotics.47.833. [DOI] [PubMed] [Google Scholar]
- Germino J., Bastia D. Rapid purification of a cloned gene product by genetic fusion and site-specific proteolysis. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4692–4696. doi: 10.1073/pnas.81.15.4692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
- Goldberg D. A. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5794–5798. doi: 10.1073/pnas.77.10.5794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosseini-Mazinani S. M., Koshikawa N., Sugimoto K., Aoki Y., Arisawa M. Cloning and sequencing of sulfite reductase alpha subunit gene from Saccharomyces cerevisiae. DNA Res. 1995;2(1):15–19. doi: 10.1093/dnares/2.1.15. [DOI] [PubMed] [Google Scholar]
- Hsu M. C., Schutt A. D., Holly M., Slice L. W., Sherman M. I., Richman D. D., Potash M. J., Volsky D. J. Inhibition of HIV replication in acute and chronic infections in vitro by a Tat antagonist. Science. 1991 Dec 20;254(5039):1799–1802. doi: 10.1126/science.1763331. [DOI] [PubMed] [Google Scholar]
- Kopp E., Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994 Aug 12;265(5174):956–959. doi: 10.1126/science.8052854. [DOI] [PubMed] [Google Scholar]
- Mountain H. A., Byström A. S., Korch C. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mol Microbiol. 1993 Jan;7(2):215–228. doi: 10.1111/j.1365-2958.1993.tb01113.x. [DOI] [PubMed] [Google Scholar]
- Peterson M. G., Baichwal V. R. Transcription factor based therapeutics: drugs of the future? Trends Biotechnol. 1993 Jan;11(1):11–18. doi: 10.1016/0167-7799(93)90069-L. [DOI] [PubMed] [Google Scholar]
- Prabhakararao K., Nicholas D. J. Sulphite reductase from bakers' yeast: a haemoflavoprotein. Biochim Biophys Acta. 1969 Jun 24;180(2):253–263. doi: 10.1016/0005-2728(69)90112-1. [DOI] [PubMed] [Google Scholar]
- Rex J. H., Rinaldi M. G., Pfaller M. A. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995 Jan;39(1):1–8. doi: 10.1128/aac.39.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D., Barbey R., Henry D., Surdin-Kerjan Y. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol. 1992 Oct;138(10):2021–2028. doi: 10.1099/00221287-138-10-2021. [DOI] [PubMed] [Google Scholar]
- Thomas D., Barbey R., Surdin-Kerjan Y. Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem. 1990 Sep 15;265(26):15518–15524. [PubMed] [Google Scholar]
- Thomas D., Cherest H., Surdin-Kerjan Y. Elements involved in S-adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Mol Cell Biol. 1989 Aug;9(8):3292–3298. doi: 10.1128/mcb.9.8.3292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D., Jacquemin I., Surdin-Kerjan Y. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Apr;12(4):1719–1727. doi: 10.1128/mcb.12.4.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]