Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jan;40(1):157–160. doi: 10.1128/aac.40.1.157

Susceptibilities of bovine summer mastitis bacteria to antimicrobial agents.

H Jousimies-Somer 1, S Pyörälä 1, A Kanervo 1
PMCID: PMC163075  PMID: 8787898

Abstract

The susceptibility to 9 antimicrobial agents of 32 aerobic bacterial isolates and to 10 antimicrobial agents of 37 anaerobic bacterial isolates from 23 cases of bovine summer mastitis (16 Actinomyces pyogenes isolates, 8 Streptococcus dysgalactiae isolates, 3 S. uberis isolates, 3 S. acidominimus isolates, 2 Streptococcus spp., 15 Peptostreptococcus indolicus isolates, 10 Fusobacterium necrophorum isolates, and 12 isolates of anaerobic gram-negative rods) was determined by the agar dilution method. All isolates except one Bacteroides fragilis isolate (beta-lactamase producer) were susceptible to penicillin G, amoxicillin, amoxicillin-clavulanate, cefoxitin, clindamycin, and chloramphenicol (the B. fragilis strain was susceptible to the last four), which had MICs at which 90% of isolates were inhibited (MIC90s) of < or = 0.06, < or = 0.06, < or = 0.06 0.25, < or = 0.06, and 4.0 micrograms/ml, respectively. Spiramycin was active against the gram-positive aerobes (MIC90, 1.0 microgram/ml) but not against the anaerobes (MIC90, 16.0 micrograms/ml). Similar trends were noted for susceptibilities of aerobic and anaerobic bacteria to ofloxacin (MIC90s, 2.0 and 8 micrograms/ml, respectively). Occasional strains of aerobic streptococci were resistant to oxytetracycline, but all anaerobes were susceptible. Tinidazole was active against all anaerobes (MIC90, 2.0 micrograms/ml). beta-Lactamase was produced only by the B. fragilis isolate.

Full Text

The Full Text of this article is available as a PDF (211.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chirino-Trejo J. M., Prescott J. F. The identification and antimicrobial susceptibility of anaerobic bacteria from pneumonic cattle lungs. Can J Comp Med. 1983 Jul;47(3):270–275. [PMC free article] [PubMed] [Google Scholar]
  2. Franklin A., Horn af Rantzien M., Obel N., Ostensson K., Aström G. Concentrations of penicillin, streptomycin, and spiramycin in bovine udder tissue liquids. Am J Vet Res. 1986 Apr;47(4):804–807. [PubMed] [Google Scholar]
  3. Goldstein E. J., Nesbit C. A., Citron D. M. Comparative in vitro activities of azithromycin, Bay y 3118, levofloxacin, sparfloxacin, and 11 other oral antimicrobial agents against 194 aerobic and anaerobic bite wound isolates. Antimicrob Agents Chemother. 1995 May;39(5):1097–1100. doi: 10.1128/aac.39.5.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hirvonen J., Pyörälä S., Heinäsuo A., Jousimies-Somer H. Penicillin G and penicillin G-tinidazole treatment of experimentally induced summer mastitis--effect on elimination rates of bacteria and outcome of the disease. Vet Microbiol. 1994 Dec;42(4):307–315. doi: 10.1016/0378-1135(94)90062-0. [DOI] [PubMed] [Google Scholar]
  5. Mevius D. J., Nouws J. F., Breukink H. J., Vree T. B., Driessens F., Verkaik R. Comparative pharmacokinetics, bioavailability and renal clearance of five parenteral oxytetracycline-20% formulations in dairy cows. Vet Q. 1986 Oct;8(4):285–294. doi: 10.1080/01652176.1986.9694057. [DOI] [PubMed] [Google Scholar]
  6. Piriz Duran S., Valle Manzano J., Cuenca Valera R., Vadillo Machota S. In-vitro antimicrobial susceptibility of Bacteroides and Fusobacterium isolated from footrot in goats. Br Vet J. 1990 Sep-Oct;146(5):437–442. doi: 10.1016/0007-1935(90)90032-x. [DOI] [PubMed] [Google Scholar]
  7. Piriz S., Cuenca R., Valle J., Vadillo S. Susceptibilities of anaerobic bacteria isolated from animals with ovine foot rot to 28 antimicrobial agents. Antimicrob Agents Chemother. 1992 Jan;36(1):198–201. doi: 10.1128/aac.36.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pyörälä S., Jousimies-Somer H., Mero M. Clinical, bacteriological and therapeutic aspects of bovine mastitis caused by aerobic and anaerobic pathogens. Br Vet J. 1992 Jan-Feb;148(1):54–62. doi: 10.1016/0007-1935(92)90067-B. [DOI] [PubMed] [Google Scholar]
  9. Pyörälä S., Silvennoinen P., Hänninen U., Mero M. Pharmacokinetics of tinidazole in cows--a preliminary study. J Vet Pharmacol Ther. 1990 Dec;13(4):425–427. doi: 10.1111/j.1365-2885.1990.tb00798.x. [DOI] [PubMed] [Google Scholar]
  10. Sanders P., Moulin G., Guillot P., Dagorn M., Perjant P., Delepine B., Gaudiche C., Mourot D. Pharmacokinetics of spiramycin after intravenous, intramuscular and subcutaneous administration in lactating cows. J Vet Pharmacol Ther. 1992 Mar;15(1):53–61. doi: 10.1111/j.1365-2885.1992.tb00986.x. [DOI] [PubMed] [Google Scholar]
  11. Soback S., Ziv G., Bor A., Shapira M. Pharmacokinetics of cephalexin glycinate in lactating cows and ewes. Zentralbl Veterinarmed A. 1988 Dec;35(10):755–760. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES