Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jan;40(1):166–172. doi: 10.1128/aac.40.1.166

Overproduction of a 37-kilodalton cytoplasmic protein homologous to NAD+-linked D-lactate dehydrogenase associated with vancomycin resistance in Staphylococcus aureus.

W M Milewski 1, S Boyle-Vavra 1, B Moreira 1, C C Ebert 1, R S Daum 1
PMCID: PMC163077  PMID: 8787900

Abstract

We previously reported the isolation of a laboratory-derived Staphylococcus aureus mutant, 523k, that has constitutive low-level resistance to vancomycin (MIC = 5 micrograms/ml) and teicoplanin (MIC = 5 micrograms/ml) and elaborates a ca. 39-kDa cytoplasmic protein that was not detected in the parent strain 523 (MIC = 1 micrograms/ml). We have now detected the protein in strain 523 by immunoblotting with antiserum raised against the protein. Consistent with our initial observations, densitometric analysis of the immunoblots revealed an increased production of the protein in 523k compared with that of the susceptible parent 523. The 5' region of the gene encoding the protein of interest was identified by nucleotide sequencing a PCR product amplified from the genome of 523k with degenerate primers designed to encode the amino acid sequence of proteolytic peptides obtained from the protein. The remainder of the gene was identified by library screening, PCR, and nucleotide sequencing. The gene encodes a 36.7-kDa protein with homology to a family of bacterial NAD+-dependent, D-specific 2-hydroxyacid dehydrogenases which includes both D-lactate dehydrogenase and the enterococcal vancomycin resistance protein VanH and is therefore designated ddh. Increased production of the product of ddh, Ddh, was associated with increased D-lactate dehydrogenase activity in 523k, a finding which suggested that Ddh is likely to be the D-lactate dehydrogenase previously identified in S. aureus. The increased D-lactate dehydrogenase activity in strain 523k and the structural similarities among Ddh, D-lactate dehydrogenase, and VanH suggest that overproduction of Ddh might play a role in vancomycin resistance in this strain.

Full Text

The Full Text of this article is available as a PDF (336.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. E., Hobbs J. N., Jr, Richardson J. M., Riggin R. M. Biosynthesis of modified peptidoglycan precursors by vancomycin-resistant Enterococcus faecium. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):109–115. doi: 10.1016/0378-1097(92)90140-j. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Arioli V., Pallanza R. Teicoplanin-resistant coagulase-negative staphylococci. Lancet. 1987 Jan 3;1(8523):39–39. doi: 10.1016/s0140-6736(87)90724-0. [DOI] [PubMed] [Google Scholar]
  4. Arthur M., Molinas C., Courvalin P. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1992 Apr;174(8):2582–2591. doi: 10.1128/jb.174.8.2582-2591.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arthur M., Molinas C., Dutka-Malen S., Courvalin P. Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases. Gene. 1991 Jul 15;103(1):133–134. doi: 10.1016/0378-1119(91)90405-z. [DOI] [PubMed] [Google Scholar]
  6. Aubert G., Passot S., Lucht F., Dorche G. Selection of vancomycin- and teicoplanin-resistant Staphylococcus haemolyticus during teicoplanin treatment of S. epidermidis infection. J Antimicrob Chemother. 1990 Mar;25(3):491–493. doi: 10.1093/jac/25.3.491. [DOI] [PubMed] [Google Scholar]
  7. Barna J. C., Williams D. H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol. 1984;38:339–357. doi: 10.1146/annurev.mi.38.100184.002011. [DOI] [PubMed] [Google Scholar]
  8. Bernard N., Ferain T., Garmyn D., Hols P., Delcour J. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli. FEBS Lett. 1991 Sep 23;290(1-2):61–64. doi: 10.1016/0014-5793(91)81226-x. [DOI] [PubMed] [Google Scholar]
  9. Bernard N., Johnsen K., Ferain T., Garmyn D., Hols P., Holbrook J. J., Delcour J. NAD(+)-dependent D-2-hydroxyisocaproate dehydrogenase of Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur J Biochem. 1994 Sep 1;224(2):439–446. doi: 10.1111/j.1432-1033.1994.00439.x. [DOI] [PubMed] [Google Scholar]
  10. Biavasco F., Giovanetti E., Montanari M. P., Lupidi R., Varaldo P. E. Development of in-vitro resistance to glycopeptide antibiotics: assessment in staphylococci of different species. J Antimicrob Chemother. 1991 Jan;27(1):71–79. doi: 10.1093/jac/27.1.71. [DOI] [PubMed] [Google Scholar]
  11. Billot-Klein D., Gutmann L., Sablé S., Guittet E., van Heijenoort J. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol. 1994 Apr;176(8):2398–2405. doi: 10.1128/jb.176.8.2398-2405.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bugg T. D., Wright G. D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C. T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991 Oct 29;30(43):10408–10415. doi: 10.1021/bi00107a007. [DOI] [PubMed] [Google Scholar]
  13. Cherubin C. E., Corrado M. L., Sierra M. F., Gombert M. E., Shulman M. Susceptibility of gram-positive cocci to various antibiotics, including cefotaxime, moxalactam, and N-formimidoyl thienamycin. Antimicrob Agents Chemother. 1981 Oct;20(4):553–555. doi: 10.1128/aac.20.4.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chomarat M., Espinouse D., Flandrois J. P. Coagulase-negative staphylococci emerging during teicoplanin therapy and problems in the determination of their sensitivity. J Antimicrob Chemother. 1991 Apr;27(4):475–480. doi: 10.1093/jac/27.4.475. [DOI] [PubMed] [Google Scholar]
  15. Daum R. S., Gupta S., Sabbagh R., Milewski W. M. Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. J Infect Dis. 1992 Nov;166(5):1066–1072. doi: 10.1093/infdis/166.5.1066. [DOI] [PubMed] [Google Scholar]
  16. Del Bene V. E., John J. F., Jr, Twitty J. A., Lewis J. W. Anti-staphylococcal activity of teicoplanin, vancomycin, and other antimicrobial agents: the significance of methicillin resistance. J Infect Dis. 1986 Aug;154(2):349–352. doi: 10.1093/infdis/154.2.349. [DOI] [PubMed] [Google Scholar]
  17. Dutka-Malen S., Leclercq R., Coutant V., Duval J., Courvalin P. Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrob Agents Chemother. 1990 Oct;34(10):1875–1879. doi: 10.1128/aac.34.10.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Froggatt J. W., Johnston J. L., Galetto D. W., Archer G. L. Antimicrobial resistance in nosocomial isolates of Staphylococcus haemolyticus. Antimicrob Agents Chemother. 1989 Apr;33(4):460–466. doi: 10.1128/aac.33.4.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. GERACI J. E., HEILMAN F. R., NICHOLS D. R., WELLMAN E. W., ROSS G. T. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Antibiot Annu. 1956:90–106. [PubMed] [Google Scholar]
  20. Garvie E. I. Bacterial lactate dehydrogenases. Microbiol Rev. 1980 Mar;44(1):106–139. doi: 10.1128/mr.44.1.106-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grant A. C., Lacey R. W., Brownjohn A. M., Turney J. H. Teicoplanin-resistant coagulase-negative staphylococcus. Lancet. 1986 Nov 15;2(8516):1166–1167. doi: 10.1016/s0140-6736(86)90580-5. [DOI] [PubMed] [Google Scholar]
  22. Grant G. A. A new family of 2-hydroxyacid dehydrogenases. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1371–1374. doi: 10.1016/0006-291x(89)92755-1. [DOI] [PubMed] [Google Scholar]
  23. Greenwood D., Bidgood K., Turner M. A comparison of the responses of staphylococci and streptococci to teicoplanin and vancomycin. J Antimicrob Chemother. 1987 Aug;20(2):155–164. doi: 10.1093/jac/20.2.155. [DOI] [PubMed] [Google Scholar]
  24. Handwerger S. Alterations in peptidoglycan precursors and vancomycin susceptibility in Tn917 insertion mutants of Enterococcus faecalis 221. Antimicrob Agents Chemother. 1994 Mar;38(3):473–475. doi: 10.1128/aac.38.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Handwerger S., Pucci M. J., Volk K. J., Liu J., Lee M. S. The cytoplasmic peptidoglycan precursor of vancomycin-resistant Enterococcus faecalis terminates in lactate. J Bacteriol. 1992 Sep;174(18):5982–5984. doi: 10.1128/jb.174.18.5982-5984.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Handwerger S., Pucci M. J., Volk K. J., Liu J., Lee M. S. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol. 1994 Jan;176(1):260–264. doi: 10.1128/jb.176.1.260-264.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kaatz G. W., Seo S. M., Dorman N. J., Lerner S. A. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis. 1990 Jul;162(1):103–108. doi: 10.1093/infdis/162.1.103. [DOI] [PubMed] [Google Scholar]
  28. Kochhar S., Hottinger H., Chuard N., Taylor P. G., Atkinson T., Scawen M. D., Nicholls D. J. Cloning and overexpression of Lactobacillus helveticus D-lactate dehydrogenase gene in Escherichia coli. Eur J Biochem. 1992 Sep 15;208(3):799–805. doi: 10.1111/j.1432-1033.1992.tb17250.x. [DOI] [PubMed] [Google Scholar]
  29. Kochhar S., Hunziker P. E., Leong-Morgenthaler P., Hottinger H. Evolutionary relationship of NAD(+)-dependent D-lactate dehydrogenase: comparison of primary structure of 2-hydroxy acid dehydrogenases. Biochem Biophys Res Commun. 1992 Apr 15;184(1):60–66. doi: 10.1016/0006-291x(92)91157-l. [DOI] [PubMed] [Google Scholar]
  30. Kochhar S., Hunziker P. E., Leong-Morgenthaler P., Hottinger H. Primary structure, physicochemical properties, and chemical modification of NAD(+)-dependent D-lactate dehydrogenase. Evidence for the presence of Arg-235, His-303, Tyr-101, and Trp-19 at or near the active site. J Biol Chem. 1992 Apr 25;267(12):8499–8513. [PubMed] [Google Scholar]
  31. Kreiswirth B. N., Löfdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature. 1983 Oct 20;305(5936):709–712. doi: 10.1038/305709a0. [DOI] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Lerch H. P., Blöcker H., Kallwass H., Hoppe J., Tsai H., Collins J. Cloning, sequencing and expression in Escherichia coli of the D-2-hydroxyisocaproate dehydrogenase gene of Lactobacillus casei. Gene. 1989 May 15;78(1):47–57. doi: 10.1016/0378-1119(89)90313-2. [DOI] [PubMed] [Google Scholar]
  34. MCGUIRE J. M., WOLFE R. N., ZIEGLER D. W. Vancomycin, a new antibiotic. II. In vitro antibacterial studies. Antibiot Annu. 1955;3:612–618. [PubMed] [Google Scholar]
  35. Mainardi J. L., Shlaes D. M., Goering R. V., Shlaes J. H., Acar J. F., Goldstein F. W. Decreased teicoplanin susceptibility of methicillin-resistant strains of Staphylococcus aureus. J Infect Dis. 1995 Jun;171(6):1646–1650. doi: 10.1093/infdis/171.6.1646. [DOI] [PubMed] [Google Scholar]
  36. Matthews P. R., Reed K. C., Stewart P. R. The cloning of chromosomal DNA associated with methicillin and other resistances in Staphylococcus aureus. J Gen Microbiol. 1987 Jul;133(7):1919–1929. doi: 10.1099/00221287-133-7-1919. [DOI] [PubMed] [Google Scholar]
  37. Noble W. C., Virani Z., Cree R. G. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett. 1992 Jun 1;72(2):195–198. doi: 10.1016/0378-1097(92)90528-v. [DOI] [PubMed] [Google Scholar]
  38. O'Hare M. D., Reynolds P. E. Novel membrane proteins present in teicoplanin-resistant, vancomycin-sensitive, coagulase-negative Staphylococcus spp. J Antimicrob Chemother. 1992 Dec;30(6):753–768. doi: 10.1093/jac/30.6.753. [DOI] [PubMed] [Google Scholar]
  39. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  40. Ruoff K. L., Kuritzkes D. R., Wolfson J. S., Ferraro M. J. Vancomycin-resistant gram-positive bacteria isolated from human sources. J Clin Microbiol. 1988 Oct;26(10):2064–2068. doi: 10.1128/jcm.26.10.2064-2068.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sanchez M. L., Wenzel R. P., Jones R. N. In vitro activity of decaplanin (M86-1410), a new glycopeptide antibiotic. Antimicrob Agents Chemother. 1992 Apr;36(4):873–875. doi: 10.1128/aac.36.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sanyal D., Johnson A. P., George R. C., Cookson B. D., Williams A. J. Peritonitis due to vancomycin-resistant Staphylococcus epidermidis. Lancet. 1991 Jan 5;337(8732):54–54. doi: 10.1016/0140-6736(91)93375-j. [DOI] [PubMed] [Google Scholar]
  43. Sanyal D., Johnson A. P., George R. C., Edwards R., Greenwood D. In-vitro characteristics of glycopeptide resistant strains of Staphylococcus epidermidis isolated from patients on CAPD. J Antimicrob Chemother. 1993 Aug;32(2):267–278. doi: 10.1093/jac/32.2.267. [DOI] [PubMed] [Google Scholar]
  44. Schoenlein P. V., Roa B. B., Winkler M. E. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J Bacteriol. 1989 Nov;171(11):6084–6092. doi: 10.1128/jb.171.11.6084-6092.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schwalbe R. S., Stapleton J. T., Gilligan P. H. Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med. 1987 Apr 9;316(15):927–931. doi: 10.1056/NEJM198704093161507. [DOI] [PubMed] [Google Scholar]
  46. Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
  47. Sheagren J. N. Staphylococcus aureus. The persistent pathogen (second of two parts). N Engl J Med. 1984 May 31;310(22):1437–1442. doi: 10.1056/NEJM198405313102206. [DOI] [PubMed] [Google Scholar]
  48. Shlaes D. M., Shlaes J. H., Vincent S., Etter L., Fey P. D., Goering R. V. Teicoplanin-resistant Staphylococcus aureus expresses a novel membrane protein and increases expression of penicillin-binding protein 2 complex. Antimicrob Agents Chemother. 1993 Nov;37(11):2432–2437. doi: 10.1128/aac.37.11.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Taguchi H., Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum. J Biol Chem. 1991 Jul 5;266(19):12588–12594. [PubMed] [Google Scholar]
  50. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tuazon C. U., Miller H. Clinical and microbiologic aspects of serious infections caused by Staphylococcus epidermidis. Scand J Infect Dis. 1983;15(4):347–360. doi: 10.3109/inf.1983.15.issue-4.05. [DOI] [PubMed] [Google Scholar]
  52. Veach L. A., Pfaller M. A., Barrett M., Koontz F. P., Wenzel R. P. Vancomycin resistance in Staphylococcus haemolyticus causing colonization and bloodstream infection. J Clin Microbiol. 1990 Sep;28(9):2064–2068. doi: 10.1128/jcm.28.9.2064-2068.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  54. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  55. Wilson A. P., O'Hare M. D., Felmingham D., Grüneberg R. N. Teicoplanin-resistant coagulase-negative staphylococcus. Lancet. 1986 Oct 25;2(8513):973–973. doi: 10.1016/s0140-6736(86)90622-7. [DOI] [PubMed] [Google Scholar]
  56. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES