Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jan;40(1):203–211. doi: 10.1128/aac.40.1.203

Differential increased survival of staphylococci and limited ultrastructural changes in the core of infected fibrin clots after daptomycin administration.

M J Michiels 1, M G Bergeron 1
PMCID: PMC163083  PMID: 8787906

Abstract

A possible explanation for the difficulties encountered in curing deep fibrin-embedded infections is that antibiotic diffusion inside the infected fibrin matrix is not homogeneous and is insufficient to neutralize the pathogen. To evaluate this conjecture, the differential pharmacodynamics of daptomycin in fibrin clots infected with methicillin-susceptible and -resistant Staphylococcus aureus and Staphylococcus epidermidis was estimated. Daptomycin (20 or 50 mg/kg of body weight) was infused over 30 min. Fibrin clots and blood samples were evaluated from 0.5 to 42 h after the injections. The half-lives of daptomycin in serum and fibrin clot were close to identical after the two doses and averaged 5.4 and 22 h, respectively. The mean areas under the concentration-time curves from 0 to 42 h (AUC0-infinity) for daptomycin concentrations in serum and infected clots were 575 +/- 36.7 and 215 +/- 6.2 micrograms/g/h after administration of 20 mg/kg and 1,089 +/- 39.9 and 326 +/- 16.8 micrograms/g/h after administration of 50 mg/kg. A concentration gradient from the periphery to the core of the clots was observed in many clots up to 18 h after treatment. Mean peak concentrations in the core of the clots reached 60% of the peripheral values (P < 0.05) and were delayed for at least 3 h compared with the peripheral peak concentrations. AUC0-42 h of daptomycin concentration in the periphery and the core of clots were significantly different (P < 0.01). Survival of microorganisms was better in the core than in the periphery, with as much as a 3 log10 CFU/g difference between the center and the surface of the clot. Bacterial examination by transmission electron microscopy also showed noticeable differences in ultrastructural changes between those in the periphery and those in the core of the clots. In conclusion, the pharmacokinetics of daptomycin are significantly different at the periphery and within the core of fibrin clots, which may have led to the higher bacterial survival in the core of clots. Limited diffusion of daptomycin in fibrin, an essential component of the vegetation in bacterial endocarditis, could explain at least in part some of the treatment failures.

Full Text

The Full Text of this article is available as a PDF (898.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alborn W. E., Jr, Allen N. E., Preston D. A. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Nov;35(11):2282–2287. doi: 10.1128/aac.35.11.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen N. E., Alborn W. E., Jr, Hobbs J. N., Jr Inhibition of membrane potential-dependent amino acid transport by daptomycin. Antimicrob Agents Chemother. 1991 Dec;35(12):2639–2642. doi: 10.1128/aac.35.12.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer A. S., Crowell D., Nast C. C., Norman D. C., Borrelli R. L. Intravegetation antimicrobial distribution in aortic endocarditis analyzed by computer-generated model. Implications for treatment. Chest. 1990 Mar;97(3):611–617. doi: 10.1378/chest.97.3.611. [DOI] [PubMed] [Google Scholar]
  4. Bergeron M. G., Robert J., Beauchamp D. Pharmacodynamics of antibiotics in fibrin clots. J Antimicrob Chemother. 1993 May;31 (Suppl 500):113–136. doi: 10.1093/jac/31.suppl_d.113. [DOI] [PubMed] [Google Scholar]
  5. Chhatwal G. S., Preissner K. T., Müller-Berghaus G., Blobel H. Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun. 1987 Aug;55(8):1878–1883. doi: 10.1128/iai.55.8.1878-1883.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cremieux A. C., Maziere B., Vallois J. M., Ottaviani M., Azancot A., Raffoul H., Bouvet A., Pocidalo J. J., Carbon C. Evaluation of antibiotic diffusion into cardiac vegetations by quantitative autoradiography. J Infect Dis. 1989 May;159(5):938–944. doi: 10.1093/infdis/159.5.938. [DOI] [PubMed] [Google Scholar]
  7. Eliopoulos G. M., Willey S., Reiszner E., Spitzer P. G., Caputo G., Moellering R. C., Jr In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic. Antimicrob Agents Chemother. 1986 Oct;30(4):532–535. doi: 10.1128/aac.30.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garrison M. W., Vance-Bryan K., Larson T. A., Toscano J. P., Rotschafer J. C. Assessment of effects of protein binding on daptomycin and vancomycin killing of Staphylococcus aureus by using an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1990 Oct;34(10):1925–1931. doi: 10.1128/aac.34.10.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamill R. J. Role of fibronectin in infective endocarditis. Rev Infect Dis. 1987 Jul-Aug;9 (Suppl 4):S360–S371. doi: 10.1093/clinids/9.supplement_4.s360. [DOI] [PubMed] [Google Scholar]
  10. Hanberger H., Nilsson L. E., Maller R., Isaksson B. Pharmacodynamics of daptomycin and vancomycin on Enterococcus faecalis and Staphylococcus aureus demonstrated by studies of initial killing and postantibiotic effect and influence of Ca2+ and albumin on these drugs. Antimicrob Agents Chemother. 1991 Sep;35(9):1710–1716. doi: 10.1128/aac.35.9.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hawiger J., Timmons S., Strong D. D., Cottrell B. A., Riley M., Doolittle R. F. Identification of a region of human fibrinogen interacting with staphylococcal clumping factor. Biochemistry. 1982 Mar 16;21(6):1407–1413. doi: 10.1021/bi00535a047. [DOI] [PubMed] [Google Scholar]
  12. Herrmann M., Lai Q. J., Albrecht R. M., Mosher D. F., Proctor R. A. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis. 1993 Feb;167(2):312–322. doi: 10.1093/infdis/167.2.312. [DOI] [PubMed] [Google Scholar]
  13. Herrmann M., Suchard S. J., Boxer L. A., Waldvogel F. A., Lew P. D. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun. 1991 Jan;59(1):279–288. doi: 10.1128/iai.59.1.279-288.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lamp K. C., Rybak M. J., Bailey E. M., Kaatz G. W. In vitro pharmacodynamic effects of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin. Antimicrob Agents Chemother. 1992 Dec;36(12):2709–2714. doi: 10.1128/aac.36.12.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee B. L., Sachdeva M., Chambers H. F. Effect of protein binding of daptomycin on MIC and antibacterial activity. Antimicrob Agents Chemother. 1991 Dec;35(12):2505–2508. doi: 10.1128/aac.35.12.2505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Connell C. J., Plaut M. E. Fibrin penetration by penicillin: in vitro simulation of intravenous therapy. J Lab Clin Med. 1969 Feb;73(2):258–265. [PubMed] [Google Scholar]
  17. Raad I., Narro J., Khan A., Tarrand J., Vartivarian S., Bodey G. P. Serious complications of vascular catheter-related Staphylococcus aureus bacteremia in cancer patients. Eur J Clin Microbiol Infect Dis. 1992 Aug;11(8):675–682. doi: 10.1007/BF01989970. [DOI] [PubMed] [Google Scholar]
  18. Rotstein O. D. Role of fibrin deposition in the pathogenesis of intraabdominal infection. Eur J Clin Microbiol Infect Dis. 1992 Nov;11(11):1064–1068. doi: 10.1007/BF01967800. [DOI] [PubMed] [Google Scholar]
  19. Rybak M. J., Bailey E. M., Lamp K. C., Kaatz G. W. Pharmacokinetics and bactericidal rates of daptomycin and vancomycin in intravenous drug abusers being treated for gram-positive endocarditis and bacteremia. Antimicrob Agents Chemother. 1992 May;36(5):1109–1114. doi: 10.1128/aac.36.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shonekan D., Mildvan D., Handwerger S. Comparative in vitro activities of teicoplanin, daptomycin, ramoplanin, vancomycin, and PD127,391 against blood isolates of gram-positive cocci. Antimicrob Agents Chemother. 1992 Jul;36(7):1570–1572. doi: 10.1128/aac.36.7.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tornos M. P., Permanyer-Miralda G., Olona M., Gil M., Galve E., Almirante B., Soler-Soler J. Long-term complications of native valve infective endocarditis in non-addicts. A 15-year follow-up study. Ann Intern Med. 1992 Oct 1;117(7):567–572. doi: 10.7326/0003-4819-117-7-567. [DOI] [PubMed] [Google Scholar]
  22. Turcotte A., Bergeron M. G. Pharmacodynamic interaction between RP 59500 and gram-positive bacteria infecting fibrin clots. Antimicrob Agents Chemother. 1992 Oct;36(10):2211–2215. doi: 10.1128/aac.36.10.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vaudaux P., Pittet D., Haeberli A., Huggler E., Nydegger U. E., Lew D. P., Waldvogel F. A. Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis. 1989 Nov;160(5):865–875. doi: 10.1093/infdis/160.5.865. [DOI] [PubMed] [Google Scholar]
  24. Vercellotti G. M., McCarthy J. B., Lindholm P., Peterson P. K., Jacob H. S., Furcht L. T. Extracellular matrix proteins (fibronectin, laminin, and type IV collagen) bind and aggregate bacteria. Am J Pathol. 1985 Jul;120(1):13–21. [PMC free article] [PubMed] [Google Scholar]
  25. WEINSTEIN L., DAIKOS G. K., PERRIN T. S. Studies on the relationship of tissue fluid and blood levels of penicillin. J Lab Clin Med. 1951 Nov;38(5):712–718. [PubMed] [Google Scholar]
  26. de la Maza L., Ruoff K. L., Ferraro M. J. In vitro activities of daptomycin and other antimicrobial agents against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother. 1989 Aug;33(8):1383–1384. doi: 10.1128/aac.33.8.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES