Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jan;40(1):253–256. doi: 10.1128/aac.40.1.253

Canine visceral leishmaniasis: successful chemotherapy induces macrophage antileishmanial activity via the L-arginine nitric oxide pathway.

I Vouldoukis 1, J C Drapier 1, A K Nüssler 1, Y Tselentis 1, O A Da Silva 1, M Gentilini 1, D M Mossalayi 1, L Monjour 1, B Dugas 1
PMCID: PMC163095  PMID: 8787918

Abstract

Following successful chemotherapy in canine visceral leishmaniasis, monocyte-derived macrophages can induce antileishmanial activity via a gamma interferon-dependent mechanism in the presence of autologous lymphocytes. The killing of leishmania correlated with the induction of the NO synthase pathway, because it correlated with the generation of nitrogen derivative production and was abrogated in the presence of NG-monomethyl-L-arginine, a competitive inhibitor of the NO synthase pathway. The level of L-citrulline in serum, which was produced after activation of the NO synthase pathway, was markedly enhanced in dogs receiving successful chemotherapy. Taken together, these data indicate that following successful chemotherapy of visceral leishmaniasis, leishmania parasites are killed by macrophages activated by gamma interferon-producing lymphocytes via an NO-dependent mechanism.

Full Text

The Full Text of this article is available as a PDF (191.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abranches P., Santos-Gomes G., Rachamim N., Campino L., Schnur L. F., Jaffe C. L. An experimental model for canine visceral leishmaniasis. Parasite Immunol. 1991 Sep;13(5):537–550. doi: 10.1111/j.1365-3024.1991.tb00550.x. [DOI] [PubMed] [Google Scholar]
  2. Berman J. D., Waddell D., Hanson B. D. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob Agents Chemother. 1985 Jun;27(6):916–920. doi: 10.1128/aac.27.6.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drapier J. C., Wietzerbin J., Hibbs J. B., Jr Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol. 1988 Oct;18(10):1587–1592. doi: 10.1002/eji.1830181018. [DOI] [PubMed] [Google Scholar]
  4. Fortier A. H., Hoover D. L., Nacy C. A. Intracellular replication of Leishmania tropica in mouse peritoneal macrophages: amastigote infection of resident cells and inflammatory exudate macrophages. Infect Immun. 1982 Dec;38(3):1304–1308. doi: 10.1128/iai.38.3.1304-1308.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  6. Green S. J., Meltzer M. S., Hibbs J. B., Jr, Nacy C. A. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J Immunol. 1990 Jan 1;144(1):278–283. [PubMed] [Google Scholar]
  7. Green S. J., Nacy C. A., Meltzer M. S. Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens. J Leukoc Biol. 1991 Jul;50(1):93–103. doi: 10.1002/jlb.50.1.93. [DOI] [PubMed] [Google Scholar]
  8. Harms G., Zwingenberger K., Sandkamp B., Omena S., Pedrosa C., Richter J., Rosenkaimer F., Feldmeier H., Bienzle U. Immunochemotherapy of visceral leishmaniasis: a pilot trial of sequential treatment with recombinant interferon-gamma and pentavalent antimony. J Interferon Res. 1993 Feb;13(1):39–41. doi: 10.1089/jir.1993.13.39. [DOI] [PubMed] [Google Scholar]
  9. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  10. Kern P. Leishmaniasis. Antibiot Chemother (1971) 1981;30:203–223. doi: 10.1159/000398098. [DOI] [PubMed] [Google Scholar]
  11. Liew F. Y., Millott S., Parkinson C., Palmer R. M., Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol. 1990 Jun 15;144(12):4794–4797. [PubMed] [Google Scholar]
  12. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  13. Murray H. W. Interferon-gamma, the activated macrophage, and host defense against microbial challenge. Ann Intern Med. 1988 Apr;108(4):595–608. doi: 10.7326/0003-4819-108-4-595. [DOI] [PubMed] [Google Scholar]
  14. Nacy C. A., Nelson B. J., Meltzer M. S., Green S. J. Cytokines that regulate macrophage production of nitrogen oxides and expression of antileishmanial activities. Res Immunol. 1991 Sep;142(7):573–576. doi: 10.1016/0923-2494(91)90105-r. [DOI] [PubMed] [Google Scholar]
  15. Nathan C. F., Hibbs J. B., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. doi: 10.1016/0952-7915(91)90079-g. [DOI] [PubMed] [Google Scholar]
  16. Neogy A. B., Vouldoukis I., da Costa J. M., Monjour L. Exploitation of parasite-derived antigen in therapeutic success against canine visceral leishmaniosis. Veterinary Group of Lupino. Vet Parasitol. 1994 Sep;54(4):367–373. doi: 10.1016/0304-4017(94)90003-5. [DOI] [PubMed] [Google Scholar]
  17. Nussler A. K., Billiar T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993 Aug;54(2):171–178. [PubMed] [Google Scholar]
  18. Palmer R. M., Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):348–352. doi: 10.1016/s0006-291x(89)80219-0. [DOI] [PubMed] [Google Scholar]
  19. Pertoft H., Johnsson A., Wärmegård B., Seljelid R. Separation of human monocytes on density gradients of Percoll. J Immunol Methods. 1980;33(3):221–229. doi: 10.1016/0022-1759(80)90209-4. [DOI] [PubMed] [Google Scholar]
  20. Vouldoukis I., Riveros-Moreno V., Dugas B., Ouaaz F., Bécherel P., Debré P., Moncada S., Mossalayi M. D. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7804–7808. doi: 10.1073/pnas.92.17.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zucker K., Lu P., Asthana D., Carreno M., Yang W. C., Esquenazi V., Fuller L., Miller J. Production and characterization of recombinant canine interferon-gamma from Escherichia coli. J Interferon Res. 1993 Apr;13(2):91–97. doi: 10.1089/jir.1993.13.91. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES