Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Feb;40(2):279–291. doi: 10.1128/aac.40.2.279

Antifungal agents: chemotherapeutic targets and immunologic strategies.

N H Georgopapadakou 1, T J Walsh 1
PMCID: PMC163103  PMID: 8834867

Full Text

The Full Text of this article is available as a PDF (288.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akova M., Akalin H. E., Uzun O., Gür D. Emergence of Candida krusei infections after therapy of oropharyngeal candidiasis with fluconazole. Eur J Clin Microbiol Infect Dis. 1991 Jul;10(7):598–599. doi: 10.1007/BF01967286. [DOI] [PubMed] [Google Scholar]
  2. Allendoerfer R., Magee D. M., Deepe G. S., Jr, Graybill J. R. Transfer of protective immunity in murine histoplasmosis by a CD4+ T-cell clone. Infect Immun. 1993 Feb;61(2):714–718. doi: 10.1128/iai.61.2.714-718.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ampel N. M., Dols C. L., Galgiani J. N. Coccidioidomycosis during human immunodeficiency virus infection: results of a prospective study in a coccidioidal endemic area. Am J Med. 1993 Mar;94(3):235–240. doi: 10.1016/0002-9343(93)90054-s. [DOI] [PubMed] [Google Scholar]
  4. Anaissie E. J., Karyotakis N. C., Hachem R., Dignani M. C., Rex J. H., Paetznick V. Correlation between in vitro and in vivo activity of antifungal agents against Candida species. J Infect Dis. 1994 Aug;170(2):384–389. doi: 10.1093/infdis/170.2.384. [DOI] [PubMed] [Google Scholar]
  5. Anaissie E., Nelson P., Beremand M., Kontoyiannis D., Rinaldi M. Fusarium-caused hyalohyphomycosis: an overview. Curr Top Med Mycol. 1992;4:231–249. doi: 10.1007/978-1-4612-2762-5_9. [DOI] [PubMed] [Google Scholar]
  6. Aoki Y., Kondoh M., Nakamura M., Fujii T., Yamazaki T., Shimada H., Arisawa M. A new methionine antagonist that has antifungal activity: mode of action. J Antibiot (Tokyo) 1994 Aug;47(8):909–916. doi: 10.7164/antibiotics.47.909. [DOI] [PubMed] [Google Scholar]
  7. Aoki Y., Yoshihara F., Kondoh M., Nakamura Y., Nakayama N., Arisawa M. Ro 09-1470 is a selective inhibitor of P-450 lanosterol C-14 demethylase of fungi. Antimicrob Agents Chemother. 1993 Dec;37(12):2662–2667. doi: 10.1128/aac.37.12.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ashman W. H., Barbuch R. J., Ulbright C. E., Jarrett H. W., Bard M. Cloning and disruption of the yeast C-8 sterol isomerase gene. Lipids. 1991 Aug;26(8):628–632. doi: 10.1007/BF02536427. [DOI] [PubMed] [Google Scholar]
  9. Ator M. A., Schmidt S. J., Adams J. L., Dolle R. E. Mechanism and inhibition of delta 24-sterol methyltransferase from Candida albicans and Candida tropicalis. Biochemistry. 1989 Dec 12;28(25):9633–9640. doi: 10.1021/bi00451a014. [DOI] [PubMed] [Google Scholar]
  10. Au-Young J., Robbins P. W. Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol. 1990 Feb;4(2):197–207. doi: 10.1111/j.1365-2958.1990.tb00587.x. [DOI] [PubMed] [Google Scholar]
  11. Baguley B. C., Römmele G., Gruner J., Wehrli W. Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem. 1979 Jul;97(2):345–351. doi: 10.1111/j.1432-1033.1979.tb13120.x. [DOI] [PubMed] [Google Scholar]
  12. Balzi E., Goffeau A. Genetics and biochemistry of yeast multidrug resistance. Biochim Biophys Acta. 1994 Aug 30;1187(2):152–162. doi: 10.1016/0005-2728(94)90102-3. [DOI] [PubMed] [Google Scholar]
  13. Barrett-Bee K., Lees J., Pinder P., Campbell J., Newboult L. Biochemical studies with a novel antifungal agent, ICI 195,739. Ann N Y Acad Sci. 1988;544:231–244. doi: 10.1111/j.1749-6632.1988.tb40409.x. [DOI] [PubMed] [Google Scholar]
  14. Barrett-Bee K., Newboult L., Pinder P. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on Candida albicans and Trichophyton quinckeanum. FEMS Microbiol Lett. 1991 Apr 15;63(2-3):127–131. doi: 10.1016/0378-1097(91)90074-k. [DOI] [PubMed] [Google Scholar]
  15. Bartlett M. S., Eichholtz R., Smith J. W. Antimicrobial susceptibility of Pneumocystis carinii in culture. Diagn Microbiol Infect Dis. 1985 Sep;3(5):381–387. doi: 10.1016/0732-8893(85)90076-8. [DOI] [PubMed] [Google Scholar]
  16. Bartlett M. S., Queener S. F., Shaw M. M., Richardson J. D., Smith J. W. Pneumocystis carinii is resistant to imidazole antifungal agents. Antimicrob Agents Chemother. 1994 Aug;38(8):1859–1861. doi: 10.1128/aac.38.8.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Beaulieu D., Tang J., Yan S. B., Vessels J. M., Radding J. A., Parr T. R., Jr Characterization and cilofungin inhibition of solubilized Aspergillus fumigatus (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother. 1994 May;38(5):937–944. doi: 10.1128/aac.38.5.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Beaulieu D., Tang J., Zeckner D. J., Parr T. R., Jr Correlation of cilofungin in vivo efficacy with its activity against Aspergillus fumigatus (1,3)-beta-D-glucan synthase. FEMS Microbiol Lett. 1993 Apr 1;108(2):133–137. doi: 10.1111/j.1574-6968.1993.tb06088.x. [DOI] [PubMed] [Google Scholar]
  19. Beck-Sagué C., Jarvis W. R. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. J Infect Dis. 1993 May;167(5):1247–1251. doi: 10.1093/infdis/167.5.1247. [DOI] [PubMed] [Google Scholar]
  20. Becker J. M., Covert N. L., Shenbagamurthi P., Steinfeld A. S., Naider F. Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrob Agents Chemother. 1983 Jun;23(6):926–929. doi: 10.1128/aac.23.6.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ben-Yaacov R., Knoller S., Caldwell G. A., Becker J. M., Koltin Y. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother. 1994 Apr;38(4):648–652. doi: 10.1128/aac.38.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bendel C. M., Hostetter M. K. Distinct mechanisms of epithelial adhesion for Candida albicans and Candida tropicalis. Identification of the participating ligands and development of inhibitory peptides. J Clin Invest. 1993 Oct;92(4):1840–1849. doi: 10.1172/JCI116775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Berliner S., Weinberger M., Ben-Bassat M., Lavie G., Weinberger A., Giller S., Pinkhas J. Amphotericin B causes aggregation of neutrophils and enhances pulmonary leukostasis. Am Rev Respir Dis. 1985 Sep;132(3):602–605. doi: 10.1164/arrd.1985.132.3.602. [DOI] [PubMed] [Google Scholar]
  24. Bodey G. P., Anaissie E., Gutterman J., Vadhan-Raj S. Role of granulocyte-macrophage colony-stimulating factor as adjuvant therapy for fungal infection in patients with cancer. Clin Infect Dis. 1993 Oct;17(4):705–707. doi: 10.1093/clinids/17.4.705. [DOI] [PubMed] [Google Scholar]
  25. Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta. 1986 Dec 22;864(3-4):257–304. doi: 10.1016/0304-4157(86)90002-x. [DOI] [PubMed] [Google Scholar]
  26. Bouffard F. A., Zambias R. A., Dropinski J. F., Balkovec J. M., Hammond M. L., Abruzzo G. K., Bartizal K. F., Marrinan J. A., Kurtz M. B., McFadden D. C. Synthesis and antifungal activity of novel cationic pneumocandin B(o) derivatives. J Med Chem. 1994 Jan 21;37(2):222–225. doi: 10.1021/jm00028a003. [DOI] [PubMed] [Google Scholar]
  27. Brajtburg J., Powderly W. G., Kobayashi G. S., Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990 Feb;34(2):183–188. doi: 10.1128/aac.34.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
  29. Bulawa C. E. Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol. 1993;47:505–534. doi: 10.1146/annurev.mi.47.100193.002445. [DOI] [PubMed] [Google Scholar]
  30. Cabib E., Bowers B., Sburlati A., Silverman S. J. Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci. 1988 Dec;5(12):370–375. [PubMed] [Google Scholar]
  31. Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother. 1991 Jan;35(1):170–173. doi: 10.1128/aac.35.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cabib E., Kang M. S. Fungal 1,3-beta-glucan synthase. Methods Enzymol. 1987;138:637–642. doi: 10.1016/0076-6879(87)38057-7. [DOI] [PubMed] [Google Scholar]
  33. Cabib E., Roberts R., Bowers B. Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem. 1982;51:763–793. doi: 10.1146/annurev.bi.51.070182.003555. [DOI] [PubMed] [Google Scholar]
  34. Cabib E., Silverman S. J., Shaw J. A. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol. 1992 Jan;138(1):97–102. doi: 10.1099/00221287-138-1-97. [DOI] [PubMed] [Google Scholar]
  35. Calderone R. A., Braun P. C. Adherence and receptor relationships of Candida albicans. Microbiol Rev. 1991 Mar;55(1):1–20. doi: 10.1128/mr.55.1.1-20.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Capobianco J. O., Doran C. C., Goldman R. C., De B. A non-azole inhibitor of lanosterol 14 alpha-methyl demethylase in Candida albicans. J Antimicrob Chemother. 1992 Dec;30(6):781–790. doi: 10.1093/jac/30.6.781. [DOI] [PubMed] [Google Scholar]
  37. Capobianco J. O., Zakula D., Coen M. L., Goldman R. C. Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1037–1044. doi: 10.1006/bbrc.1993.1153. [DOI] [PubMed] [Google Scholar]
  38. Carman G. M., Henry S. A. Phospholipid biosynthesis in yeast. Annu Rev Biochem. 1989;58:635–669. doi: 10.1146/annurev.bi.58.070189.003223. [DOI] [PubMed] [Google Scholar]
  39. Casadevall A., Mukherjee J., Devi S. J., Schneerson R., Robbins J. B., Scharff M. D. Antibodies elicited by a Cryptococcus neoformans-tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J Infect Dis. 1992 Jun;165(6):1086–1093. doi: 10.1093/infdis/165.6.1086. [DOI] [PubMed] [Google Scholar]
  40. Cassone A., Mason R. E., Kerridge D. Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia. 1981 Jun;19(2):97–110. [PubMed] [Google Scholar]
  41. Chang Y. C., Kwon-Chung K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994 Jul;14(7):4912–4919. doi: 10.1128/mcb.14.7.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Chen T. S., Petuch B., MacConnell J., White R., Dezeny G., Arison B., Bergstrom J. D., Colwell L., Huang L., Monaghan R. L. The preparation of zaragozic acid A analogues by directed biosynthesis. J Antibiot (Tokyo) 1994 Nov;47(11):1290–1294. doi: 10.7164/antibiotics.47.1290. [DOI] [PubMed] [Google Scholar]
  43. Choi W. J., Cabib E. The use of divalent cations and pH for the determination of specific yeast chitin synthetases. Anal Biochem. 1994 Jun;219(2):368–372. doi: 10.1006/abio.1994.1278. [DOI] [PubMed] [Google Scholar]
  44. Cleveland D. W., Sullivan K. F. Molecular biology and genetics of tubulin. Annu Rev Biochem. 1985;54:331–365. doi: 10.1146/annurev.bi.54.070185.001555. [DOI] [PubMed] [Google Scholar]
  45. Coker R. J., Harris J. R. Failure of fluconazole treatment in cryptococcal meningitis despite adequate CSF levels. J Infect. 1991 Jul;23(1):101–103. doi: 10.1016/0163-4453(91)94283-p. [DOI] [PubMed] [Google Scholar]
  46. Cole G. T., Kirkland T. N. Identification of antigens of Coccidioides immitis which stimulated immune T lymphocytes. Arch Med Res. 1993 Autumn;24(3):281–291. [PubMed] [Google Scholar]
  47. Colthurst D. R., Santos M., Grant C. M., Tuite M. F. Candida albicans and three other Candida species contain an elongation factor structurally and functionally analogous to elongation factor 3. FEMS Microbiol Lett. 1991 May 1;64(1):45–49. doi: 10.1016/0378-1097(91)90207-q. [DOI] [PubMed] [Google Scholar]
  48. Corio-Costet M. F., Gerst N., Benveniste P., Schuber F. Inhibition by the fungicide fenpropimorph of cholesterol biosynthesis in 3T3 fibroblasts. Biochem J. 1988 Dec 15;256(3):829–834. doi: 10.1042/bj2560829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Costigan C., Gehrung S., Snyder M. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol Cell Biol. 1992 Mar;12(3):1162–1178. doi: 10.1128/mcb.12.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
  51. DONOVICK R., GOLD W., PAGANO J. F., STOUT H. A. Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu. 1955;3:579–586. [PubMed] [Google Scholar]
  52. Dawson M. J., Farthing J. E., Marshall P. S., Middleton R. F., O'Neill M. J., Shuttleworth A., Stylli C., Tait R. M., Taylor P. M., Wildman H. G. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot (Tokyo) 1992 May;45(5):639–647. doi: 10.7164/antibiotics.45.639. [DOI] [PubMed] [Google Scholar]
  53. Debono M., Abbott B. J., Turner J. R., Howard L. C., Gordee R. S., Hunt A. S., Barnhart M., Molloy R. M., Willard K. E., Fukuda D. Synthesis and evaluation of LY121019, a member of a series of semisynthetic analogues of the antifungal lipopeptide echinocandin B. Ann N Y Acad Sci. 1988;544:152–167. doi: 10.1111/j.1749-6632.1988.tb40398.x. [DOI] [PubMed] [Google Scholar]
  54. Decker H., Walz F., Bormann C., Zähner H., Fiedler H. P., Heitsch H., König W. A. Metabolic products of microorganisms. 255. Nikkomycins Wz and Wx, new chitin synthetase inhibitors from Streptomyces tendae. J Antibiot (Tokyo) 1990 Jan;43(1):43–48. doi: 10.7164/antibiotics.43.43. [DOI] [PubMed] [Google Scholar]
  55. Denning D. W. Epidemiology and pathogenesis of systemic fungal infections in the immunocompromised host. J Antimicrob Chemother. 1991 Oct;28 (Suppl B):1–16. doi: 10.1093/jac/28.suppl_b.1. [DOI] [PubMed] [Google Scholar]
  56. Devi S. J., Schneerson R., Egan W., Ulrich T. J., Bryla D., Robbins J. B., Bennett J. E. Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect Immun. 1991 Oct;59(10):3700–3707. doi: 10.1128/iai.59.10.3700-3707.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Diamond R. D. The growing problem of mycoses in patients infected with the human immunodeficiency virus. Rev Infect Dis. 1991 May-Jun;13(3):480–486. doi: 10.1093/clinids/13.3.480. [DOI] [PubMed] [Google Scholar]
  58. Diasio R. B., Bennett J. E., Myers C. E. Mode of action of 5-fluorocytosine. Biochem Pharmacol. 1978 Mar 1;27(5):703–707. doi: 10.1016/0006-2952(78)90507-5. [DOI] [PubMed] [Google Scholar]
  59. Dick J. D., Merz W. G., Saral R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother. 1980 Jul;18(1):158–163. doi: 10.1128/aac.18.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Dixon D. M., Migliozzi J., Cooper C. R., Jr, Solis O., Breslin B., Szaniszlo P. J. Melanized and non-melanized multicellular form mutants of Wangiella dermatitidis in mice: mortality and histopathology studies. Mycoses. 1992 Jan-Feb;35(1-2):17–21. doi: 10.1111/j.1439-0507.1992.tb00814.x. [DOI] [PubMed] [Google Scholar]
  61. Douglas C. M., Marrinan J. A., Li W., Kurtz M. B. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J Bacteriol. 1994 Sep;176(18):5686–5696. doi: 10.1128/jb.176.18.5686-5696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Duronio R. J., Towler D. A., Heuckeroth R. O., Gordon J. I. Disruption of the yeast N-myristoyl transferase gene causes recessive lethality. Science. 1989 Feb 10;243(4892):796–800. doi: 10.1126/science.2644694. [DOI] [PubMed] [Google Scholar]
  63. Dyer M., Volpe F., Delves C. J., Somia N., Burns S., Scaife J. G. Cloning and sequence of a beta-tubulin cDNA from Pneumocystis carinii: possible implications for drug therapy. Mol Microbiol. 1992 Apr;6(8):991–1001. doi: 10.1111/j.1365-2958.1992.tb02165.x. [DOI] [PubMed] [Google Scholar]
  64. Dykstra C. C., McClernon D. R., Elwell L. P., Tidwell R. R. Selective inhibition of topoisomerases from Pneumocystis carinii compared with that of topoisomerases from mammalian cells. Antimicrob Agents Chemother. 1994 Sep;38(9):1890–1898. doi: 10.1128/aac.38.9.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Edwards J. E., Jr, Mayer C. L., Filler S. G., Wadsworth E., Calderone R. A. Cell extracts of Candida albicans block adherence of the organisms to endothelial cells. Infect Immun. 1992 Aug;60(8):3087–3091. doi: 10.1128/iai.60.8.3087-3091.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Errede B., Levin D. E. A conserved kinase cascade for MAP kinase activation in yeast. Curr Opin Cell Biol. 1993 Apr;5(2):254–260. doi: 10.1016/0955-0674(93)90112-4. [DOI] [PubMed] [Google Scholar]
  67. Espinel-Ingroff A., Dawson K., Pfaller M., Anaissie E., Breslin B., Dixon D., Fothergill A., Paetznick V., Peter J., Rinaldi M. Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrob Agents Chemother. 1995 Feb;39(2):314–319. doi: 10.1128/aac.39.2.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Etienne G., Armau E., Tiraby G. A screening method for antifungal substances using Saccharomyces cerevisiae strains resistant to polyene macrolides. J Antibiot (Tokyo) 1990 Feb;43(2):199–206. doi: 10.7164/antibiotics.43.199. [DOI] [PubMed] [Google Scholar]
  69. Fasoli M., Kerridge D. Isolation and characterization of fluoropyrimidine-resistant mutants in two Candida species. Ann N Y Acad Sci. 1988;544:260–263. doi: 10.1111/j.1749-6632.1988.tb40411.x. [DOI] [PubMed] [Google Scholar]
  70. Fisher J. F., Chew W. H., Shadomy S., Duma R. J., Mayhall C. G., House W. C. Urinary tract infections due to Candida albicans. Rev Infect Dis. 1982 Nov-Dec;4(6):1107–1118. doi: 10.1093/clinids/4.6.1107. [DOI] [PubMed] [Google Scholar]
  71. Fostel J., Montgomery D. Identification of the aminocatechol A-3253 as an in vitro poison of DNA topoisomerase I from Candida albicans. Antimicrob Agents Chemother. 1995 Mar;39(3):586–592. doi: 10.1128/AAC.39.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Francis P., Lee J. W., Hoffman A., Peter J., Francesconi A., Bacher J., Shelhamer J., Pizzo P. A., Walsh T. J. Efficacy of unilamellar liposomal amphotericin B in treatment of pulmonary aspergillosis in persistently granulocytopenic rabbits: the potential role of bronchoalveolar D-mannitol and serum galactomannan as markers of infection. J Infect Dis. 1994 Feb;169(2):356–368. doi: 10.1093/infdis/169.2.356. [DOI] [PubMed] [Google Scholar]
  73. Francis P., Walsh T. J. Evolving role of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics, and antifungal therapy. Clin Infect Dis. 1992 Dec;15(6):1003–1018. doi: 10.1093/clind/15.6.1003. [DOI] [PubMed] [Google Scholar]
  74. Fromtling R. A. Overview of medically important antifungal azole derivatives. Clin Microbiol Rev. 1988 Apr;1(2):187–217. doi: 10.1128/cmr.1.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Frost D. J., Brandt K., Capobianco J., Goldman R. Characterization of (1,3)-beta-glucan synthase in Candida albicans: microsomal assay from the yeast or mycelial morphological forms and a permeabilized whole-cell assay. Microbiology. 1994 Sep;140(Pt 9):2239–2246. doi: 10.1099/13500872-140-9-2239. [DOI] [PubMed] [Google Scholar]
  76. Fusek M., Smith E. A., Monod M., Dunn B. M., Foundling S. I. Extracellular aspartic proteinases from Candida albicans, Candida tropicalis, and Candida parapsilosis yeasts differ substantially in their specificities. Biochemistry. 1994 Aug 16;33(32):9791–9799. doi: 10.1021/bi00198a051. [DOI] [PubMed] [Google Scholar]
  77. Gale E. F. Nature and development of phenotypic resistance to amphotericin B in Candida albicans. Adv Microb Physiol. 1986;27:277–320. doi: 10.1016/s0065-2911(08)60307-0. [DOI] [PubMed] [Google Scholar]
  78. Galgiani J. N., Sun S. H., Dugger K. O., Ampel N. M., Grace G. G., Harrison J., Wieden M. A. An arthroconidial-spherule antigen of Coccidioides immitis: differential expression during in vitro fungal development and evidence for humoral response in humans after infection or vaccination. Infect Immun. 1992 Jul;60(7):2627–2635. doi: 10.1128/iai.60.7.2627-2635.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Galgiani J. N. Susceptibility testing of fungi: current status of the standardization process. Antimicrob Agents Chemother. 1993 Dec;37(12):2517–2521. doi: 10.1128/aac.37.12.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Gallis H. A., Drew R. H., Pickard W. W. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990 Mar-Apr;12(2):308–329. doi: 10.1093/clinids/12.2.308. [DOI] [PubMed] [Google Scholar]
  81. Gaughran J. P., Lai M. H., Kirsch D. R., Silverman S. J. Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J Bacteriol. 1994 Sep;176(18):5857–5860. doi: 10.1128/jb.176.18.5857-5860.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Georgopapadakou N. H., Bertasso A. Effects of squalene epoxidase inhibitors on Candida albicans. Antimicrob Agents Chemother. 1992 Aug;36(8):1779–1781. doi: 10.1128/aac.36.8.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Georgopapadakou N. H., Dix B. A., Smith S. A., Freudenberger J., Funke P. T. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob Agents Chemother. 1987 Jan;31(1):46–51. doi: 10.1128/aac.31.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Georgopapadakou N. H., Tkacz J. S. The fungal cell wall as a drug target. Trends Microbiol. 1995 Mar;3(3):98–104. doi: 10.1016/s0966-842x(00)88890-3. [DOI] [PubMed] [Google Scholar]
  85. Georgopapadakou N. H., Walsh T. J. Human mycoses: drugs and targets for emerging pathogens. Science. 1994 Apr 15;264(5157):371–373. doi: 10.1126/science.8153622. [DOI] [PubMed] [Google Scholar]
  86. Ghannoum M. A., Filler S. G., Ibrahim A. S., Fu Y., Edwards J. E., Jr Modulation of interactions of Candida albicans and endothelial cells by fluconazole and amphotericin B. Antimicrob Agents Chemother. 1992 Oct;36(10):2239–2244. doi: 10.1128/aac.36.10.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  88. Gooday B. W. Biosynthesis of the fungal wall - mechanisms and implications. The first Fleming Lecture. J Gen Microbiol. 1977 Mar;99(1):1–11. doi: 10.1099/00221287-99-1-1. [DOI] [PubMed] [Google Scholar]
  89. Gozalbo D., Elorza M. V., Sanjuan R., Marcilla A., Valentín E., Sentandreu R. Critical steps in fungal cell wall synthesis: strategies for their inhibition. Pharmacol Ther. 1993 Nov;60(2):337–345. doi: 10.1016/0163-7258(93)90015-6. [DOI] [PubMed] [Google Scholar]
  90. Hanger D. P., Jevons S., Shaw J. T. Fluconazole and testosterone: in vivo and in vitro studies. Antimicrob Agents Chemother. 1988 May;32(5):646–648. doi: 10.1128/aac.32.5.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Hanson L. H., Stevens D. A. Comparison of antifungal activity of amphotericin B deoxycholate suspension with that of amphotericin B cholesteryl sulfate colloidal dispersion. Antimicrob Agents Chemother. 1992 Feb;36(2):486–488. doi: 10.1128/aac.36.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Hartland R. P., Emerson G. W., Sullivan P. A. A secreted beta-glucan-branching enzyme from Candida albicans. Proc Biol Sci. 1991 Nov 22;246(1316):155–160. doi: 10.1098/rspb.1991.0138. [DOI] [PubMed] [Google Scholar]
  93. Hartwell L. H. Alfred P. Sloan, Jr. Prize. Role of yeast in cancer research. Cancer. 1992 May 15;69(10):2615–2621. doi: 10.1002/1097-0142(19920515)69:10<2615::aid-cncr2820691036>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  94. Hector R. F., Braun P. C. Synergistic action of nikkomycins X and Z with papulacandin B on whole cells and regenerating protoplasts of Candida albicans. Antimicrob Agents Chemother. 1986 Mar;29(3):389–394. doi: 10.1128/aac.29.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Hector R. F., Schaller K. Positive interaction of nikkomycins and azoles against Candida albicans in vitro and in vivo. Antimicrob Agents Chemother. 1992 Jun;36(6):1284–1289. doi: 10.1128/aac.36.6.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  97. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J Med Vet Mycol. 1987 Feb;25(1):29–37. doi: 10.1080/02681218780000041. [DOI] [PubMed] [Google Scholar]
  98. Hitchcock C. A. Cytochrome P-450-dependent 14 alpha-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem Soc Trans. 1991 Aug;19(3):782–787. doi: 10.1042/bst0190782. [DOI] [PubMed] [Google Scholar]
  99. Hitchcock C. A. Resistance of Candida albicans to azole antifungal agents. Biochem Soc Trans. 1993 Nov;21(4):1039–1047. doi: 10.1042/bst0211039. [DOI] [PubMed] [Google Scholar]
  100. Horie M., Tsuchiya Y., Hayashi M., Iida Y., Iwasawa Y., Nagata Y., Sawasaki Y., Fukuzumi H., Kitani K., Kamei T. NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem. 1990 Oct 25;265(30):18075–18078. [PubMed] [Google Scholar]
  101. Horn W. S., Smith J. L., Bills G. F., Raghoobar S. L., Helms G. L., Kurtz M. B., Marrinan J. A., Frommer B. R., Thornton R. A., Mandala S. M. Sphingofungins E and F: novel serinepalmitoyl transferase inhibitors from Paecilomyces variotii. J Antibiot (Tokyo) 1992 Oct;45(10):1692–1696. doi: 10.7164/antibiotics.45.1692. [DOI] [PubMed] [Google Scholar]
  102. Hostetter M. K. Adhesins and ligands involved in the interaction of Candida spp. with epithelial and endothelial surfaces. Clin Microbiol Rev. 1994 Jan;7(1):29–42. doi: 10.1128/cmr.7.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Hostetter M. K., Lorenz J. S., Preus L., Kendrick K. E. The iC3b receptor on Candida albicans: subcellular localization and modulation of receptor expression by glucose. J Infect Dis. 1990 Apr;161(4):761–768. doi: 10.1093/infdis/161.4.761. [DOI] [PubMed] [Google Scholar]
  104. Hughes V., Müller A., Stark M. J., Cohen P. T. Both isoforms of protein phosphatase Z are essential for the maintenance of cell size and integrity in Saccharomyces cerevisiae in response to osmotic stress. Eur J Biochem. 1993 Aug 15;216(1):269–279. doi: 10.1111/j.1432-1033.1993.tb18142.x. [DOI] [PubMed] [Google Scholar]
  105. Hughes W. T. Pneumocystis carinii pneumonia: new approaches to diagnosis, treatment and prevention. Pediatr Infect Dis J. 1991 May;10(5):391–399. [PubMed] [Google Scholar]
  106. Ibrahim A. S., Mirbod F., Filler S. G., Banno Y., Cole G. T., Kitajima Y., Edwards J. E., Jr, Nozawa Y., Ghannoum M. A. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun. 1995 May;63(5):1993–1998. doi: 10.1128/iai.63.5.1993-1998.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Irie K., Takase M., Lee K. S., Levin D. E., Araki H., Matsumoto K., Oshima Y. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol. 1993 May;13(5):3076–3083. doi: 10.1128/mcb.13.5.3076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Iwasaki S. Antimitotic agents: chemistry and recognition of tubulin molecule. Med Res Rev. 1993 Mar;13(2):183–198. doi: 10.1002/med.2610130205. [DOI] [PubMed] [Google Scholar]
  109. Iwatani W., Arika T., Yamaguchi H. Two mechanisms of butenafine action in Candida albicans. Antimicrob Agents Chemother. 1993 Apr;37(4):785–788. doi: 10.1128/aac.37.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Johnson D. R., Bhatnagar R. S., Knoll L. J., Gordon J. I. Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem. 1994;63:869–914. doi: 10.1146/annurev.bi.63.070194.004253. [DOI] [PubMed] [Google Scholar]
  111. Johnson E. M., Warnock D. W., Luker J., Porter S. R., Scully C. Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J Antimicrob Chemother. 1995 Jan;35(1):103–114. doi: 10.1093/jac/35.1.103. [DOI] [PubMed] [Google Scholar]
  112. Johnson E. M., Warnock D. W., Richardson M. D., Douglas C. J. In-vitro effect of itraconazole, ketoconazole and amphotericin B on the phagocytic and candidacidal function of human neutrophils. J Antimicrob Chemother. 1986 Jul;18(1):83–91. doi: 10.1093/jac/18.1.83. [DOI] [PubMed] [Google Scholar]
  113. Jones S. K., Hall J. E., Allen M. A., Morrison S. D., Ohemeng K. A., Reddy V. V., Geratz J. D., Tidwell R. R. Novel pentamidine analogs in the treatment of experimental Pneumocystis carinii pneumonia. Antimicrob Agents Chemother. 1990 Jun;34(6):1026–1030. doi: 10.1128/aac.34.6.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Kamath A., Chakraburtty K. Role of yeast elongation factor 3 in the elongation cycle. J Biol Chem. 1989 Sep 15;264(26):15423–15428. [PubMed] [Google Scholar]
  115. Kaneshiro E. S., Cushion M. T., Walzer P. D., Jayasimhulu K. Analyses of Pneumocystis fatty acids. J Protozool. 1989 Jan-Feb;36(1):69S–72S. [PubMed] [Google Scholar]
  116. Kang M. S., Cabib E. Regulation of fungal cell wall growth: a guanine nucleotide-binding, proteinaceous component required for activity of (1----3)-beta-D-glucan synthase. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5808–5812. doi: 10.1073/pnas.83.16.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Kelly D. E., Rose M. E., Kelly S. L. Investigation of the role of sterol delta 8-->7-isomerase in the sensitivity of Saccharomyces cerevisiae to fenpropimorph. FEMS Microbiol Lett. 1994 Oct 1;122(3):223–226. doi: 10.1111/j.1574-6968.1994.tb07171.x. [DOI] [PubMed] [Google Scholar]
  118. Kelly S. L., Lamb D. C., Corran A. J., Baldwin B. C., Kelly D. E. Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun. 1995 Feb 27;207(3):910–915. doi: 10.1006/bbrc.1995.1272. [DOI] [PubMed] [Google Scholar]
  119. Kelly S. L., Lamb D. C., Taylor M., Corran A. J., Baldwin B. C., Powderly W. G. Resistance to amphotericin B associated with defective sterol delta 8-->7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett. 1994 Sep 15;122(1-2):39–42. doi: 10.1111/j.1574-6968.1994.tb07140.x. [DOI] [PubMed] [Google Scholar]
  120. Kelly S. L., Rowe J., Watson P. F. Molecular genetic studies on the mode of action of azole antifungal agents. Biochem Soc Trans. 1991 Aug;19(3):796–798. doi: 10.1042/bst0190796. [DOI] [PubMed] [Google Scholar]
  121. Kennedy M. J., Calderone R. A., Cutler J. E., Kanabe T., Riesselman M. H., Robert R., Senet J. M., Annaix V., Bouali A., Mahaza C. Molecular basis of Candida albicans adhesion. J Med Vet Mycol. 1992;30 (Suppl 1):95–122. [PubMed] [Google Scholar]
  122. Kerridge D., Fasoli M., Wayman F. J. Drug resistance in Candida albicans and Candida glabrata. Ann N Y Acad Sci. 1988;544:245–259. doi: 10.1111/j.1749-6632.1988.tb40410.x. [DOI] [PubMed] [Google Scholar]
  123. Kiehn T. E., Edwards F. F., Armstrong D. The prevalence of yeasts in clinical specimens from cancer patients. Am J Clin Pathol. 1980 Apr;73(4):518–521. doi: 10.1093/ajcp/73.4.518. [DOI] [PubMed] [Google Scholar]
  124. Kilmartin J. V. Purification of yeast tubulin by self-assembly in vitro. Biochemistry. 1981 Jun 9;20(12):3629–3633. doi: 10.1021/bi00515a050. [DOI] [PubMed] [Google Scholar]
  125. Kishore N. S., Wood D. C., Mehta P. P., Wade A. C., Lu T., Gokel G. W., Gordon J. I. Comparison of the acyl chain specificities of human myristoyl-CoA synthetase and human myristoyl-CoA:protein N-myristoyltransferase. J Biol Chem. 1993 Mar 5;268(7):4889–4902. [PubMed] [Google Scholar]
  126. Klig L. S., Friedli L., Schmid E. Phospholipid biosynthesis in Candida albicans: regulation by the precursors inositol and choline. J Bacteriol. 1990 Aug;172(8):4407–4414. doi: 10.1128/jb.172.8.4407-4414.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Klig L. S., Homann M. J., Kohlwein S. D., Kelley M. J., Henry S. A., Carman G. M. Saccharomyces cerevisiae mutant with a partial defect in the synthesis of CDP-diacylglycerol and altered regulation of phospholipid biosynthesis. J Bacteriol. 1988 Apr;170(4):1878–1886. doi: 10.1128/jb.170.4.1878-1886.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Klis F. M. Review: cell wall assembly in yeast. Yeast. 1994 Jul;10(7):851–869. doi: 10.1002/yea.320100702. [DOI] [PubMed] [Google Scholar]
  129. Klotz S. A., Hein R. C., Smith R. L., Rouse J. B. The fibronectin adhesin of Candida albicans. Infect Immun. 1994 Oct;62(10):4679–4681. doi: 10.1128/iai.62.10.4679-4681.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Klotz S. A., Smith R. L., Stewart B. W. Effect of an arginine-glycine-aspartic acid-containing peptide on hematogenous candidal infections in rabbits. Antimicrob Agents Chemother. 1992 Jan;36(1):132–136. doi: 10.1128/aac.36.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Ko Y. T., Frost D. J., Ho C. T., Ludescher R. D., Wasserman B. P. Inhibition of yeast (1,3)-beta-glucan synthase by phospholipase A2 and its reaction products. Biochim Biophys Acta. 1994 Jul 13;1193(1):31–40. doi: 10.1016/0005-2736(94)90329-8. [DOI] [PubMed] [Google Scholar]
  132. Ko Y. T., Ludescher R. D., Frost D. J., Wasserman B. P. Use of cilofungin as direct fluorescent probe for monitoring antifungal drug-membrane interaction. Antimicrob Agents Chemother. 1994 Jun;38(6):1378–1385. doi: 10.1128/aac.38.6.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Konishi M., Nishio M., Saitoh K., Miyaki T., Oki T., Kawaguchi H. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot (Tokyo) 1989 Dec;42(12):1749–1755. doi: 10.7164/antibiotics.42.1749. [DOI] [PubMed] [Google Scholar]
  134. Kurtz M. B., Heath I. B., Marrinan J., Dreikorn S., Onishi J., Douglas C. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother. 1994 Jul;38(7):1480–1489. doi: 10.1128/aac.38.7.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Kwon-Chung K. J., Rhodes J. C. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986 Jan;51(1):218–223. doi: 10.1128/iai.51.1.218-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Langner C. A., Lodge J. K., Travis S. J., Caldwell J. E., Lu T., Li Q., Bryant M. L., Devadas B., Gokel G. W., Kobayashi G. S. 4-oxatetradecanoic acid is fungicidal for Cryptococcus neoformans and inhibits replication of human immunodeficiency virus I. J Biol Chem. 1992 Aug 25;267(24):17159–17169. [PubMed] [Google Scholar]
  137. Larsen R. A., Bozzette S. A., Jones B. E., Haghighat D., Leal M. A., Forthal D., Bauer M., Tilles J. G., McCutchan J. A., Leedom J. M. Fluconazole combined with flucytosine for treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis. 1994 Oct;19(4):741–745. doi: 10.1093/clinids/19.4.741. [DOI] [PubMed] [Google Scholar]
  138. Lau A. S. Cytokines in the pathogenesis and treatment of infectious diseases. Adv Pediatr Infect Dis. 1994;9:211–236. [PubMed] [Google Scholar]
  139. Lee K. S., Irie K., Gotoh Y., Watanabe Y., Araki H., Nishida E., Matsumoto K., Levin D. E. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol. 1993 May;13(5):3067–3075. doi: 10.1128/mcb.13.5.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Lester R. L., Dickson R. C. Sphingolipids with inositolphosphate-containing head groups. Adv Lipid Res. 1993;26:253–274. [PubMed] [Google Scholar]
  141. Levin D. E., Bartlett-Heubusch E. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol. 1992 Mar;116(5):1221–1229. doi: 10.1083/jcb.116.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Levin D. E., Fields F. O., Kunisawa R., Bishop J. M., Thorner J. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell. 1990 Jul 27;62(2):213–224. doi: 10.1016/0092-8674(90)90360-q. [DOI] [PubMed] [Google Scholar]
  143. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  144. Lodge J. K., Jackson-Machelski E., Toffaletti D. L., Perfect J. R., Gordon J. I. Targeted gene replacement demonstrates that myristoyl-CoA: protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12008–12012. doi: 10.1073/pnas.91.25.12008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Lodge J. K., Johnson R. L., Weinberg R. A., Gordon J. I. Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans. J Biol Chem. 1994 Jan 28;269(4):2996–3009. [PubMed] [Google Scholar]
  146. Lopez-Berestein G., Bodey G. P., Fainstein V., Keating M., Frankel L. S., Zeluff B., Gentry L., Mehta K. Treatment of systemic fungal infections with liposomal amphotericin B. Arch Intern Med. 1989 Nov;149(11):2533–2536. [PubMed] [Google Scholar]
  147. Marcireau C., Guilloton M., Karst F. In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother. 1990 Jun;34(6):989–993. doi: 10.1128/aac.34.6.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Marcireau C., Guyonnet D., Karst F. Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr Genet. 1992 Oct;22(4):267–272. doi: 10.1007/BF00317919. [DOI] [PubMed] [Google Scholar]
  149. Martin E., Stüben A., Görz A., Weller U., Bhakdi S. Novel aspect of amphotericin B action: accumulation in human monocytes potentiates killing of phagocytosed Candida albicans. Antimicrob Agents Chemother. 1994 Jan;38(1):13–22. doi: 10.1128/aac.38.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Matthews R. C. Pathogenicity determinants of Candida albicans: potential targets for immunotherapy? Microbiology. 1994 Jul;140(Pt 7):1505–1511. doi: 10.1099/13500872-140-7-1505. [DOI] [PubMed] [Google Scholar]
  151. Matthews R. C. The 14th C. L. Oakley Lecture. Candida albicans HSP 90: link between protective and auto immunity. J Med Microbiol. 1992 Jun;36(6):367–370. doi: 10.1099/00222615-36-6-367. [DOI] [PubMed] [Google Scholar]
  152. McCann P. P., Pegg A. E. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther. 1992;54(2):195–215. doi: 10.1016/0163-7258(92)90032-u. [DOI] [PubMed] [Google Scholar]
  153. McCarthy P. J., Troke P. F., Gull K. Mechanism of action of nikkomycin and the peptide transport system of Candida albicans. J Gen Microbiol. 1985 Apr;131(4):775–780. doi: 10.1099/00221287-131-4-775. [DOI] [PubMed] [Google Scholar]
  154. McCreath K. J., Specht C. A., Robbins P. W. Molecular cloning and characterization of chitinase genes from Candida albicans. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2544–2548. doi: 10.1073/pnas.92.7.2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Mercer E. I. Inhibitors of sterol biosynthesis and their applications. Prog Lipid Res. 1993;32(4):357–416. doi: 10.1016/0163-7827(93)90016-p. [DOI] [PubMed] [Google Scholar]
  156. Mercer E. I. Sterol biosynthesis inhibitors: their current status and modes of action. Lipids. 1991 Aug;26(8):584–597. doi: 10.1007/BF02536422. [DOI] [PubMed] [Google Scholar]
  157. Millon L., Manteaux A., Reboux G., Drobacheff C., Monod M., Barale T., Michel-Briand Y. Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of Candida albicans strains with the same genotype. J Clin Microbiol. 1994 Apr;32(4):1115–1118. doi: 10.1128/jcm.32.4.1115-1118.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Mol P. C., Park H. M., Mullins J. T., Cabib E. A GTP-binding protein regulates the activity of (1-->3)-beta-glucan synthase, an enzyme directly involved in yeast cell wall morphogenesis. J Biol Chem. 1994 Dec 9;269(49):31267–31274. [PubMed] [Google Scholar]
  159. Moldave K. Eukaryotic protein synthesis. Annu Rev Biochem. 1985;54:1109–1149. doi: 10.1146/annurev.bi.54.070185.005333. [DOI] [PubMed] [Google Scholar]
  160. Monk B. C., Perlin D. S. Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol. 1994;20(3):209–223. doi: 10.3109/10408419409114555. [DOI] [PubMed] [Google Scholar]
  161. Moore M. A. Hematopoietic reconstruction: new approaches. Clin Cancer Res. 1995 Jan;1(1):3–9. [PubMed] [Google Scholar]
  162. Moors M. A., Stull T. L., Blank K. J., Buckley H. R., Mosser D. M. A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med. 1992 Jun 1;175(6):1643–1651. doi: 10.1084/jem.175.6.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Mukherjee J., Nussbaum G., Scharff M. D., Casadevall A. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J Exp Med. 1995 Jan 1;181(1):405–409. doi: 10.1084/jem.181.1.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Mukherjee J., Pirofski L. A., Scharff M. D., Casadevall A. Antibody-mediated protection in mice with lethal intracerebral Cryptococcus neoformans infection. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3636–3640. doi: 10.1073/pnas.90.8.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Mukherjee J., Zuckier L. S., Scharff M. D., Casadevall A. Therapeutic efficacy of monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob Agents Chemother. 1994 Mar;38(3):580–587. doi: 10.1128/aac.38.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Muroi M., Takasu A., Yamasaki M., Takatsuki A. Folimycin (concanamycin A), an inhibitor of V-type H(+)-ATPase, blocks cell-surface expression of virus-envelope glycoproteins. Biochem Biophys Res Commun. 1993 Jun 30;193(3):999–1005. doi: 10.1006/bbrc.1993.1724. [DOI] [PubMed] [Google Scholar]
  167. Murphy J. W. Cryptococcal immunity and immunostimulation. Adv Exp Med Biol. 1992;319:225–230. doi: 10.1007/978-1-4615-3434-1_23. [DOI] [PubMed] [Google Scholar]
  168. Nemunaitis J., Meyers J. D., Buckner C. D., Shannon-Dorcy K., Mori M., Shulman H., Bianco J. A., Higano C. S., Groves E., Storb R. Phase I trial of recombinant human macrophage colony-stimulating factor in patients with invasive fungal infections. Blood. 1991 Aug 15;78(4):907–913. [PubMed] [Google Scholar]
  169. Nes W. D., Janssen G. G., Crumley F. G., Kalinowska M., Akihisa T. The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Arch Biochem Biophys. 1993 Feb 1;300(2):724–733. doi: 10.1006/abbi.1993.1100. [DOI] [PubMed] [Google Scholar]
  170. Nurse P. The Wellcome Lecture, 1992. Cell cycle control. Philos Trans R Soc Lond B Biol Sci. 1993 Sep 29;341(1298):449–454. doi: 10.1098/rstb.1993.0127. [DOI] [PubMed] [Google Scholar]
  171. Nègre E., Vogel T., Levanon A., Guy R., Walsh T. J., Roberts D. D. The collagen binding domain of fibronectin contains a high affinity binding site for Candida albicans. J Biol Chem. 1994 Sep 2;269(35):22039–22045. [PubMed] [Google Scholar]
  172. Odds F. C. Resistance of yeasts to azole-derivative antifungals. J Antimicrob Chemother. 1993 Apr;31(4):463–471. doi: 10.1093/jac/31.4.463. [DOI] [PubMed] [Google Scholar]
  173. Odds F. C., Webster C. E. Effects of azole antifungals in vitro on host/parasite interactions relevant to Candida infections. J Antimicrob Chemother. 1988 Oct;22(4):473–481. doi: 10.1093/jac/22.4.473. [DOI] [PubMed] [Google Scholar]
  174. Oki T., Hirano M., Tomatsu K., Numata K., Kamei H. Cispentacin, a new antifungal antibiotic. II. In vitro and in vivo antifungal activities. J Antibiot (Tokyo) 1989 Dec;42(12):1756–1762. doi: 10.7164/antibiotics.42.1756. [DOI] [PubMed] [Google Scholar]
  175. Oki T., Kakushima M., Hirano M., Takahashi A., Ohta A., Masuyoshi S., Hatori M., Kamei H. In vitro and in vivo antifungal activities of BMS-181184. J Antibiot (Tokyo) 1992 Sep;45(9):1512–1517. doi: 10.7164/antibiotics.45.1512. [DOI] [PubMed] [Google Scholar]
  176. Oki T., Konishi M., Tomatsu K., Tomita K., Saitoh K., Tsunakawa M., Nishio M., Miyaki T., Kawaguchi H. Pradimicin, a novel class of potent antifungal antibiotics. J Antibiot (Tokyo) 1988 Nov;41(11):1701–1704. doi: 10.7164/antibiotics.41.1701. [DOI] [PubMed] [Google Scholar]
  177. Oki T., Tenmyo O., Hirano M., Tomatsu K., Kamei H. Pradimicins A, B and C: new antifungal antibiotics. II. In vitro and in vivo biological activities. J Antibiot (Tokyo) 1990 Jul;43(7):763–770. doi: 10.7164/antibiotics.43.763. [DOI] [PubMed] [Google Scholar]
  178. Orlean P. Two chitin synthases in Saccharomyces cerevisiae. J Biol Chem. 1987 Apr 25;262(12):5732–5739. [PubMed] [Google Scholar]
  179. Osheroff N. Biochemical basis for the interactions of type I and type II topoisomerases with DNA. Pharmacol Ther. 1989;41(1-2):223–241. doi: 10.1016/0163-7258(89)90108-3. [DOI] [PubMed] [Google Scholar]
  180. Pallister C. J., Johnson E. M., Warnock D. W., Elliot P. J., Reeves D. F. In-vitro effects of liposome-encapsulated amphotericin B (AmBisome) and amphotericin B-deoxycholate (Fungizone) on the phagocytic and candidacidal function of human polymorphonuclear leucocytes. J Antimicrob Chemother. 1992 Sep;30(3):313–320. doi: 10.1093/jac/30.3.313. [DOI] [PubMed] [Google Scholar]
  181. Pannuti C., Gingrich R., Pfaller M. A., Kao C., Wenzel R. P. Nosocomial pneumonia in patients having bone marrow transplant. Attributable mortality and risk factors. Cancer. 1992 Jun 1;69(11):2653–2662. doi: 10.1002/1097-0142(19920601)69:11<2653::aid-cncr2820691106>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  182. Pappagianis D. Evaluation of the protective efficacy of the killed Coccidioides immitis spherule vaccine in humans. The Valley Fever Vaccine Study Group. Am Rev Respir Dis. 1993 Sep;148(3):656–660. doi: 10.1164/ajrccm/148.3.656. [DOI] [PubMed] [Google Scholar]
  183. Paranjape V., Roy B. G., Datta A. Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans. J Gen Microbiol. 1990 Nov;136(11):2149–2154. doi: 10.1099/00221287-136-11-2149. [DOI] [PubMed] [Google Scholar]
  184. Patterson T. F., Miniter P., Dijkstra J., Szoka F. C., Jr, Ryan J. L., Andriole V. T. Treatment of experimental invasive aspergillosis with novel amphotericin B/cholesterol-sulfate complexes. J Infect Dis. 1989 Apr;159(4):717–724. doi: 10.1093/infdis/159.4.717. [DOI] [PubMed] [Google Scholar]
  185. Patton J. L., Lester R. L. The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. J Bacteriol. 1991 May;173(10):3101–3108. doi: 10.1128/jb.173.10.3101-3108.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Perfect J. R., Toffaletti D. L., Rude T. H. The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun. 1993 Oct;61(10):4446–4451. doi: 10.1128/iai.61.10.4446-4451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Peter M., Herskowitz I. Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell. 1994 Oct 21;79(2):181–184. doi: 10.1016/0092-8674(94)90186-4. [DOI] [PubMed] [Google Scholar]
  188. Petranyi G., Ryder N. S., Stütz A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science. 1984 Jun 15;224(4654):1239–1241. doi: 10.1126/science.6547247. [DOI] [PubMed] [Google Scholar]
  189. Pfaller M. A., Messer S. A., Hollis R. J. Strain delineation and antifungal susceptibilities of epidemiologically related and unrelated isolates of Candida lusitaniae. Diagn Microbiol Infect Dis. 1994 Nov;20(3):127–133. doi: 10.1016/0732-8893(94)90106-6. [DOI] [PubMed] [Google Scholar]
  190. Pfaller M. A., Riley J., Gerarden T. Polyamine depletion and growth inhibition of Cryptococcus neoformans by alpha-difluoromethylornithine and cyclohexylamine. Mycopathologia. 1990 Oct;112(1):27–32. doi: 10.1007/BF01795176. [DOI] [PubMed] [Google Scholar]
  191. Pfaller M., Wenzel R. Impact of the changing epidemiology of fungal infections in the 1990s. Eur J Clin Microbiol Infect Dis. 1992 Apr;11(4):287–291. doi: 10.1007/BF01962067. [DOI] [PubMed] [Google Scholar]
  192. Pierce A. M., Pierce H. D., Jr, Unrau A. M., Oehlschlager A. C. Lipid composition and polyene antibiotic resistance of Candida albicans mutants. Can J Biochem. 1978 Feb;56(2):135–142. doi: 10.1139/o78-023. [DOI] [PubMed] [Google Scholar]
  193. Pizzo P. A. Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med. 1993 May 6;328(18):1323–1332. doi: 10.1056/NEJM199305063281808. [DOI] [PubMed] [Google Scholar]
  194. Powderly W. G., Kobayashi G. S., Herzig G. P., Medoff G. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med. 1988 May;84(5):826–832. doi: 10.1016/0002-9343(88)90059-9. [DOI] [PubMed] [Google Scholar]
  195. Puccetti P., Mencacci A., Cenci E., Spaccapelo R., Mosci P., Enssle K. H., Romani L., Bistoni F. Cure of murine candidiasis by recombinant soluble interleukin-4 receptor. J Infect Dis. 1994 Jun;169(6):1325–1331. doi: 10.1093/infdis/169.6.1325. [DOI] [PubMed] [Google Scholar]
  196. Qin S. L., Xie A. G., Bonato M. C., McLaughlin C. S. Sequence analysis of the translational elongation factor 3 from Saccharomyces cerevisiae. J Biol Chem. 1990 Feb 5;265(4):1903–1912. [PubMed] [Google Scholar]
  197. Rahier A., Taton M., Benveniste P. Inhibition of sterol biosynthesis enzymes in vitro by analogues of high-energy carbocationic intermediates. Biochem Soc Trans. 1990 Feb;18(1):48–52. doi: 10.1042/bst0180048. [DOI] [PubMed] [Google Scholar]
  198. Ray T. L., Payne C. D. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun. 1988 Aug;56(8):1942–1949. doi: 10.1128/iai.56.8.1942-1949.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Rex J. H., Bennett J. E., Gallin J. I., Malech H. L., DeCarlo E. S., Melnick D. A. In vivo interferon-gamma therapy augments the in vitro ability of chronic granulomatous disease neutrophils to damage Aspergillus hyphae. J Infect Dis. 1991 Apr;163(4):849–852. doi: 10.1093/infdis/163.4.849. [DOI] [PubMed] [Google Scholar]
  200. Rex J. H., Pfaller M. A., Rinaldi M. G., Polak A., Galgiani J. N. Antifungal susceptibility testing. Clin Microbiol Rev. 1993 Oct;6(4):367–381. doi: 10.1128/cmr.6.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Rex J. H., Rinaldi M. G., Pfaller M. A. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995 Jan;39(1):1–8. doi: 10.1128/aac.39.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Richardson M. D. Opportunistic and pathogenic fungi. J Antimicrob Chemother. 1991 Jul;28 (Suppl A):1–11. doi: 10.1093/jac/28.suppl_a.1. [DOI] [PubMed] [Google Scholar]
  203. Rinaldi M. G. Problems in the diagnosis of invasive fungal diseases. Rev Infect Dis. 1991 May-Jun;13(3):493–495. doi: 10.1093/clinids/13.3.493. [DOI] [PubMed] [Google Scholar]
  204. Ringdén O., Meunier F., Tollemar J., Ricci P., Tura S., Kuse E., Viviani M. A., Gorin N. C., Klastersky J., Fenaux P. Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother. 1991 Oct;28 (Suppl B):73–82. doi: 10.1093/jac/28.suppl_b.73. [DOI] [PubMed] [Google Scholar]
  205. Robinson G. W., Tsay Y. H., Kienzle B. K., Smith-Monroy C. A., Bishop R. W. Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol Cell Biol. 1993 May;13(5):2706–2717. doi: 10.1128/mcb.13.5.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Rocque W. J., McWherter C. A., Wood D. C., Gordon J. I. A comparative analysis of the kinetic mechanism and peptide substrate specificity of human and Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Biol Chem. 1993 May 15;268(14):9964–9971. [PubMed] [Google Scholar]
  207. Roilides E., Holmes A., Blake C., Pizzo P. A., Walsh T. J. Impairment of neutrophil antifungal activity against hyphae of Aspergillus fumigatus in children infected with human immunodeficiency virus. J Infect Dis. 1993 Apr;167(4):905–911. doi: 10.1093/infdis/167.4.905. [DOI] [PubMed] [Google Scholar]
  208. Roilides E., Pizzo P. A. Modulation of host defenses by cytokines: evolving adjuncts in prevention and treatment of serious infections in immunocompromised hosts. Clin Infect Dis. 1992 Sep;15(3):508–524. doi: 10.1093/clind/15.3.508. [DOI] [PubMed] [Google Scholar]
  209. Roilides E., Uhlig K., Venzon D., Pizzo P. A., Walsh T. J. Prevention of corticosteroid-induced suppression of human polymorphonuclear leukocyte-induced damage of Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and gamma interferon. Infect Immun. 1993 Nov;61(11):4870–4877. doi: 10.1128/iai.61.11.4870-4877.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Roilides E., Walsh T. J., Rubin M., Venzon D., Pizzo P. A. Effects of antifungal agents on the function of human neutrophils in vitro. Antimicrob Agents Chemother. 1990 Feb;34(2):196–201. doi: 10.1128/aac.34.2.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Romani L., Mencacci A., Grohmann U., Mocci S., Mosci P., Puccetti P., Bistoni F. Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis. J Exp Med. 1992 Jul 1;176(1):19–25. doi: 10.1084/jem.176.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Romani L., Puccetti P., Mencacci A., Cenci E., Spaccapelo R., Tonnetti L., Grohmann U., Bistoni F. Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. J Immunol. 1994 Apr 1;152(7):3514–3521. [PubMed] [Google Scholar]
  213. Rosowsky A., Hynes J. B., Queener S. F. Structure-activity and structure-selectivity studies on diaminoquinazolines and other inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother. 1995 Jan;39(1):79–86. doi: 10.1128/aac.39.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Ryder N. S. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci. 1988;544:208–220. doi: 10.1111/j.1749-6632.1988.tb40405.x. [DOI] [PubMed] [Google Scholar]
  215. Ryder N. S. Squalene epoxidase as a target for the allylamines. Biochem Soc Trans. 1991 Aug;19(3):774–777. doi: 10.1042/bst0190774. [DOI] [PubMed] [Google Scholar]
  216. Røder B. L., Sonnenschein C., Hartzen S. H. Failure of fluconazole therapy in Candida krusei fungemia. Eur J Clin Microbiol Infect Dis. 1991 Mar;10(3):173–173. doi: 10.1007/BF01964453. [DOI] [PubMed] [Google Scholar]
  217. Sarić M., Clarkson A. B., Jr Ornithine decarboxylase in Pneumocystis carinii and implications for therapy. Antimicrob Agents Chemother. 1994 Nov;38(11):2545–2552. doi: 10.1128/aac.38.11.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Sasnauskas K., Jomantiene R., Lebediene E., Lebedys J., Januska A., Janulaitis A. Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cycloheximide. Gene. 1992 Jul 1;116(1):105–108. doi: 10.1016/0378-1119(92)90636-4. [DOI] [PubMed] [Google Scholar]
  219. Sawada Y., Numata K., Murakami T., Tanimichi H., Yamamoto S., Oki T. Calcium-dependent anticandidal action of pradimicin A. J Antibiot (Tokyo) 1990 Jun;43(6):715–721. doi: 10.7164/antibiotics.43.715. [DOI] [PubMed] [Google Scholar]
  220. Schmatz D. M., Romancheck M. A., Pittarelli L. A., Schwartz R. E., Fromtling R. A., Nollstadt K. H., Vanmiddlesworth F. L., Wilson K. E., Turner M. J. Treatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitors. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5950–5954. doi: 10.1073/pnas.87.15.5950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Shaw J. A., Mol P. C., Bowers B., Silverman S. J., Valdivieso M. H., Durán A., Cabib E. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1991 Jul;114(1):111–123. doi: 10.1083/jcb.114.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Sheldrick K. S., Carr A. M. Feedback controls and G2 checkpoints: fission yeast as a model system. Bioessays. 1993 Dec;15(12):775–782. doi: 10.1002/bies.950151202. [DOI] [PubMed] [Google Scholar]
  223. Shematek E. M., Braatz J. A., Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1 leads to 3)glucan synthetase. J Biol Chem. 1980 Feb 10;255(3):888–894. [PubMed] [Google Scholar]
  224. Shen L. L., Baranowski J., Fostel J., Montgomery D. A., Lartey P. A. DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs. Antimicrob Agents Chemother. 1992 Dec;36(12):2778–2784. doi: 10.1128/aac.36.12.2778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Sherlock G., Rosamond J. Starting to cycle: G1 controls regulating cell division in budding yeast. J Gen Microbiol. 1993 Nov;139(11):2531–2541. doi: 10.1099/00221287-139-11-2531. [DOI] [PubMed] [Google Scholar]
  226. Sherr C. J. G1 phase progression: cycling on cue. Cell. 1994 Nov 18;79(4):551–555. doi: 10.1016/0092-8674(94)90540-1. [DOI] [PubMed] [Google Scholar]
  227. Shimokawa O., Nakayama H. Increased sensitivity of Candida albicans cells accumulating 14 alpha-methylated sterols to active oxygen: possible relevance to in vivo efficacies of azole antifungal agents. Antimicrob Agents Chemother. 1992 Aug;36(8):1626–1629. doi: 10.1128/aac.36.8.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Silverman S. J., Sburlati A., Slater M. L., Cabib E. Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4735–4739. doi: 10.1073/pnas.85.13.4735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Skogerson L., Engelhardt D. Dissimilarity in protein chain elongation factor requirements between yeast and rat liver ribosomes. J Biol Chem. 1977 Feb 25;252(4):1471–1475. [PubMed] [Google Scholar]
  230. Sokol-Anderson M., Sligh J. E., Jr, Elberg S., Brajtburg J., Kobayashi G. S., Medoff G. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother. 1988 May;32(5):702–705. doi: 10.1128/aac.32.5.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Sud I. J., Feingold D. S. Action of antifungal imidazoles on Staphylococcus aureus. Antimicrob Agents Chemother. 1982 Sep;22(3):470–474. doi: 10.1128/aac.22.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Sudoh M., Nagahashi S., Doi M., Ohta A., Takagi M., Arisawa M. Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Gen Genet. 1993 Nov;241(3-4):351–358. doi: 10.1007/BF00284688. [DOI] [PubMed] [Google Scholar]
  233. Sugar A. M. Empiric treatment of fungal infections in the neutropenic host. Review of the literature and guidelines for use. Arch Intern Med. 1990 Nov;150(11):2258–2264. [PubMed] [Google Scholar]
  234. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  235. Taft C. S., Enderlin C. S., Selitrennikoff C. P. A high throughput in vitro assay for fungal (1,3)beta-glucan synthase inhibitors. J Antibiot (Tokyo) 1994 Sep;47(9):1001–1009. doi: 10.7164/antibiotics.47.1001. [DOI] [PubMed] [Google Scholar]
  236. Takeuchi T., Hara T., Naganawa H., Okada M., Hamada M., Umezawa H., Gomi S., Sezaki M., Kondo S. New antifungal antibiotics, benanomicins A and B from an actinomycete. J Antibiot (Tokyo) 1988 Jun;41(6):807–811. doi: 10.7164/antibiotics.41.807. [DOI] [PubMed] [Google Scholar]
  237. Tang J., Parr T. R., Jr W-1 solubilization and kinetics of inhibition by cilofungin of Candida albicans (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother. 1991 Jan;35(1):99–103. doi: 10.1128/aac.35.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Taton M., Benveniste P., Rahier A., Johnson W. S., Liu H. T., Sudhakar A. R. Inhibition of 2,3-oxidosqualene cyclases. Biochemistry. 1992 Sep 1;31(34):7892–7898. doi: 10.1021/bi00149a021. [DOI] [PubMed] [Google Scholar]
  239. Ueki T., Numata K., Sawada Y., Nishio M., Ohkuma H., Toda S., Kamachi H., Fukagawa Y., Oki T. Studies on the mode of antifungal action of pradimicin antibiotics. II. D-mannopyranoside-binding site and calcium-binding site. J Antibiot (Tokyo) 1993 Mar;46(3):455–464. doi: 10.7164/antibiotics.46.455. [DOI] [PubMed] [Google Scholar]
  240. Uritani M., Miyazaki M. Characterization of the ATPase and GTPase activities of elongation factor 3 (EF-3) purified from yeasts. J Biochem. 1988 Mar;103(3):522–530. doi: 10.1093/oxfordjournals.jbchem.a122302. [DOI] [PubMed] [Google Scholar]
  241. Vago T., Baldi G., Colombo D., Barbareschi M., Norbiato G., Dallegri F., Bevilacqua M. Effects of naftifine and terbinafine, two allylamine antifungal drugs, on selected functions of human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1994 Nov;38(11):2605–2611. doi: 10.1128/aac.38.11.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. VanMiddlesworth F., Giacobbe R. A., Lopez M., Garrity G., Bland J. A., Bartizal K., Fromtling R. A., Polishook J., Zweerink M., Edison A. M. Sphingofungins A, B, C, and D; a new family of antifungal agents. I. Fermentation, isolation, and biological activity. J Antibiot (Tokyo) 1992 Jun;45(6):861–867. doi: 10.7164/antibiotics.45.861. [DOI] [PubMed] [Google Scholar]
  243. Vanden Bossche H. Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. Curr Top Med Mycol. 1985;1:313–351. doi: 10.1007/978-1-4613-9547-8_12. [DOI] [PubMed] [Google Scholar]
  244. Vanden Bossche H., Marichal P., Gorrens J., Bellens D., Moereels H., Janssen P. A. Mutation in cytochrome P-450-dependent 14 alpha-demethylase results in decreased affinity for azole antifungals. Biochem Soc Trans. 1990 Feb;18(1):56–59. doi: 10.1042/bst0180056. [DOI] [PubMed] [Google Scholar]
  245. Viviani M. A. Flucytosine--what is its future? J Antimicrob Chemother. 1995 Feb;35(2):241–244. doi: 10.1093/jac/35.2.241. [DOI] [PubMed] [Google Scholar]
  246. Walsh T. J., Lee J. W., Kelly P., Bacher J., Lecciones J., Thomas V., Lyman C., Coleman D., Gordee R., Pizzo P. A. Antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3-beta-glucan synthetase inhibitor, during continuous and intermittent intravenous infusions in treatment of experimental disseminated candidiasis. Antimicrob Agents Chemother. 1991 Jul;35(7):1321–1328. doi: 10.1128/aac.35.7.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Walsh T. J., Lee J., Lecciones J., Rubin M., Butler K., Francis P., Weinberger M., Roilides E., Marshall D., Gress J. Empiric therapy with amphotericin B in febrile granulocytopenic patients. Rev Infect Dis. 1991 May-Jun;13(3):496–503. doi: 10.1093/clinids/13.3.496. [DOI] [PubMed] [Google Scholar]
  248. Walsh T. J., Melcher G. P., Rinaldi M. G., Lecciones J., McGough D. A., Kelly P., Lee J., Callender D., Rubin M., Pizzo P. A. Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol. 1990 Jul;28(7):1616–1622. doi: 10.1128/jcm.28.7.1616-1622.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Walsh T. J., Pizzo P. A. Nosocomial fungal infections: a classification for hospital-acquired fungal infections and mycoses arising from endogenous flora or reactivation. Annu Rev Microbiol. 1988;42:517–545. doi: 10.1146/annurev.mi.42.100188.002505. [DOI] [PubMed] [Google Scholar]
  250. Walsh T. J., Van Cutsem J., Polak A. M., Graybill J. R. Immunomodulation and antifungal therapy of experimental invasive candidosis, histoplasmosis and aspergillosis: recent advances and concepts. J Med Vet Mycol. 1992;30 (Suppl 1):225–240. doi: 10.1080/02681219280000921. [DOI] [PubMed] [Google Scholar]
  251. Wang Y., Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 1994 Jul;62(7):3004–3007. doi: 10.1128/iai.62.7.3004-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Warnock D. W. Amphotericin B: an introduction. J Antimicrob Chemother. 1991 Oct;28 (Suppl B):27–38. doi: 10.1093/jac/28.suppl_b.27. [DOI] [PubMed] [Google Scholar]
  253. Watson P. F., Rose M. E., Ellis S. W., England H., Kelly S. L. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1170–1175. doi: 10.1016/0006-291x(89)91792-0. [DOI] [PubMed] [Google Scholar]
  254. Watt P. M., Hickson I. D. Structure and function of type II DNA topoisomerases. Biochem J. 1994 Nov 1;303(Pt 3):681–695. doi: 10.1042/bj3030681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Woods R. A. Nystatin-resistant mutants of yeast: alterations in sterol content. J Bacteriol. 1971 Oct;108(1):69–73. doi: 10.1128/jb.108.1.69-73.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Wright R. J., Carne A., Hieber A. D., Lamont I. L., Emerson G. W., Sullivan P. A. A second gene for a secreted aspartate proteinase in Candida albicans. J Bacteriol. 1992 Dec;174(23):7848–7853. doi: 10.1128/jb.174.23.7848-7853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Yadan J. C., Gonneau M., Sarthou P., Le Goffic F. Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases. J Bacteriol. 1984 Dec;160(3):884–888. doi: 10.1128/jb.160.3.884-888.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Yamaki H., Yamaguchi M., Imamura H., Suzuki H., Nishimura T., Saito H., Yamaguchi H. The mechanism of antifungal action of (S)-2-amino-4-oxo-5-hydroxypentanoic acid, RI-331: the inhibition of homoserine dehydrogenase in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1990 Apr 30;168(2):837–843. doi: 10.1016/0006-291x(90)92397-i. [DOI] [PubMed] [Google Scholar]
  259. Zweerink M. M., Edison A. M., Wells G. B., Pinto W., Lester R. L. Characterization of a novel, potent, and specific inhibitor of serine palmitoyltransferase. J Biol Chem. 1992 Dec 15;267(35):25032–25038. [PubMed] [Google Scholar]
  260. de Nobel H., Lipke P. N. Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol. 1994 Feb;4(2):42–45. doi: 10.1016/0962-8924(94)90003-5. [DOI] [PubMed] [Google Scholar]
  261. el-Sherbeini M., Clemas J. A. Nikkomycin Z supersensitivity of an echinocandin-resistant mutant of Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1995 Jan;39(1):200–207. doi: 10.1128/aac.39.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. vanden Bossche H., Marichal P., Odds F. C., Le Jeune L., Coene M. C. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 1992 Dec;36(12):2602–2610. doi: 10.1128/aac.36.12.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES