Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Feb;40(2):314–319. doi: 10.1128/aac.40.2.314

Activity of trovafloxacin (CP-99,219) against Legionella isolates: in vitro activity, intracellular accumulation and killing in macrophages, and pharmacokinetics and treatment of guinea pigs with L. pneumophila pneumonia.

P H Edelstein 1, M A Edelstein 1, J Ren 1, R Polzer 1, R P Gladue 1
PMCID: PMC163108  PMID: 8834872

Abstract

The activity of trovafloxacin against 22 clinical Legionella isolates was determined by broth microdilution susceptibility testing. The trovafloxacin concentration required to inhibit 90% of strains tested was < or = 0.004 micrograms/ml, in contrast to 0.032 micrograms/ml for ofloxacin. In guinea pig alveolar macrophages, trovafloxacin achieved intracellular levels up to 28-fold over the extracellular concentration, which was similar to the levels obtained with erythromycin. Trovafloxacin (0.25 micrograms/ml) reduced bacterial counts of two L. pneumophila strains grown in guinea pig alveolar macrophages by > 2 log10 CFU/ml, without regrowth, under drug-free conditions over a 3-day period; trovafloxacin was significantly more active than ofloxacin or erythromycin (0.25 to 1 microgram/ml) in this assay. Single-dose (10 mg of prodrug CP-116,517-27 per kg of body weight given intraperitoneally [i.p.], equivalent to 7.5 mg of trovafloxacin per kg) pharmacokinetic studies performed in guinea pigs with L. pneumophila pneumonia revealed peak serum and lung trovafloxacin levels to be 3.8 micrograms/ml and 5.0 micrograms/g, respectively, at 0.5 h and 4.2 micrograms/ml and 2.9 micrograms/g, respectively, at 1 h. Administration of a lower prodrug dose (1.4 mg of trovafloxacin equivalent per kg i.p.) gave levels in lung and serum of 0.4 microgram/g and 0.4 microgram/ml, respectively, 1 h after drug administration. The terminal half-lives of elimination from serum and lung were 0.8 and 1.1 h, respectively. All 15 infected guinea pigs treated for 5 days with CP-116,517-27 once daily (10 mg/kg/day i.p., equivalent to 7.5 mg of trovafloxacin per kg/day) survived for 10 days after antimicrobial therapy, as did all 15 guinea pigs treated with ofloxacin once daily (10 mg/kg/day i.p.) for 5 days. None of 13 animals treated with saline survived. In a second experiment with animals, trovafloxacin (1.4 mg/kg/day i.p. for 5 days) protected all 16 guinea pigs from death, whereas all 15 animals treated with saline died. Trovafloxacin is an effective antimicrobial agent against Legionella in vitro and in vivo, with the ability to concentrate in macrophages and kill intracellular organisms.

Full Text

The Full Text of this article is available as a PDF (227.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertrand A., Janbon F., Despaux E., Jonquet O., Reynes J. L'ofloxacine (RU 43280). Etude clinique. Pathol Biol (Paris) 1987 May;35(5):629–633. [PubMed] [Google Scholar]
  2. Bouhaja B., Thabet H., Slim L., Aissa F., Amamou M., Yacoub M. Pneumopathie communautaire mixte à Legionella pneumophila et Staphylococcus aureus. Presse Med. 1993 Sep 18;22(27):1280–1280. [PubMed] [Google Scholar]
  3. Dournon E., Rajagopalan P., Vilde J. L., Pocidalo J. J. Efficacy of pefloxacin in comparison with erythromycin in the treatment of experimental guinea pig legionellosis. J Antimicrob Chemother. 1986 Apr;17 (Suppl B):41–48. doi: 10.1093/jac/17.suppl_b.41. [DOI] [PubMed] [Google Scholar]
  4. Edelstein P. H. Antimicrobial chemotherapy for legionnaires' disease: a review. Clin Infect Dis. 1995 Dec;21 (Suppl 3):S265–S276. doi: 10.1093/clind/21.supplement_3.s265. [DOI] [PubMed] [Google Scholar]
  5. Edelstein P. H., Calarco K., Yasui V. K. Antimicrobial therapy of experimentally induced Legionnaires' disease in guinea pigs. Am Rev Respir Dis. 1984 Nov;130(5):849–856. doi: 10.1164/arrd.1984.130.5.849. [DOI] [PubMed] [Google Scholar]
  6. Edelstein P. H., Edelstein M. A., Holzknecht B. In vitro activities of fleroxacin against clinical isolates of Legionella spp., its pharmacokinetics in guinea pigs, and use to treat guinea pigs with L. pneumophila pneumonia. Antimicrob Agents Chemother. 1992 Nov;36(11):2387–2391. doi: 10.1128/aac.36.11.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edelstein P. H., Edelstein M. A. In vitro activity of RP 74501-RP 74502, a novel streptogramin antimicrobial mixture, against clinical isolates of Legionella species. Antimicrob Agents Chemother. 1993 Apr;37(4):908–910. doi: 10.1128/aac.37.4.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edelstein P. H., Edelstein M. A. In vitro activity of Ro 23-9424 against clinical isolates of Legionella species. Antimicrob Agents Chemother. 1992 Nov;36(11):2559–2561. doi: 10.1128/aac.36.11.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edelstein P. H., Edelstein M. A. In vitro activity of azithromycin against clinical isolates of Legionella species. Antimicrob Agents Chemother. 1991 Jan;35(1):180–181. doi: 10.1128/aac.35.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edelstein P. H., Edelstein M. A. In vitro extracellular and intracellular activities of clavulanic acid and those of piperacillin and ceftriaxone alone and in combination with tazobactam against clinical isolates of Legionella species. Antimicrob Agents Chemother. 1994 Feb;38(2):200–204. doi: 10.1128/aac.38.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edelstein P. H., Edelstein M. A. WIN 57273 is bactericidal for Legionella pneumophila grown in alveolar macrophages. Antimicrob Agents Chemother. 1989 Dec;33(12):2132–2136. doi: 10.1128/aac.33.12.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edelstein P. H., Edelstein M. A., Weidenfeld J., Dorr M. B. In vitro activity of sparfloxacin (CI-978; AT-4140) for clinical Legionella isolates, pharmacokinetics in guinea pigs, and use to treat guinea pigs with L. pneumophila pneumonia. Antimicrob Agents Chemother. 1990 Nov;34(11):2122–2127. doi: 10.1128/aac.34.11.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edelstein P. H. Improved semiselective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. J Clin Microbiol. 1981 Sep;14(3):298–303. doi: 10.1128/jcm.14.3.298-303.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eliopoulos G. M., Klimm K., Eliopoulos C. T., Ferraro M. J., Moellering R. C., Jr In vitro activity of CP-99,219, a new fluoroquinolone, against clinical isolates of gram-positive bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):366–370. doi: 10.1128/aac.37.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fitzgeorge R. B., Gibson D. H., Jepras R., Baskerville A. Studies on ciprofloxacin therapy of experimental Legionnaires' disease. J Infect. 1985 May;10(3):194–203. doi: 10.1016/s0163-4453(85)92438-7. [DOI] [PubMed] [Google Scholar]
  16. Gentry L. O., Lipsky B., Farber M. O., Tucker B., Rodriguez-Gomez G. Oral ofloxacin therapy for lower respiratory tract infection. South Med J. 1992 Jan;85(1):14–18. doi: 10.1097/00007611-199201000-00005. [DOI] [PubMed] [Google Scholar]
  17. Girard A. E., Girard D., Gootz T. D., Faiella J. A., Cimochowski C. R. In vivo efficacy of trovafloxacin (CP-99,219), a new quinolone with extended activities against gram-positive pathogens, Streptococcus pneumoniae, and Bacteroides fragilis. Antimicrob Agents Chemother. 1995 Oct;39(10):2210–2216. doi: 10.1128/aac.39.10.2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gooding B. B., Jones R. N. In vitro antimicrobial activity of CP-99,219, a novel azabicyclo-naphthyridone. Antimicrob Agents Chemother. 1993 Feb;37(2):349–353. doi: 10.1128/aac.37.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gootz T. D., Brighty K. E., Anderson M. R., Schmieder B. J., Haskell S. L., Sutcliffe J. A., Castaldi M. J., McGuirk P. R. In vitro activity of CP-99,219, a novel 7-(3-azabicyclo[3.1.0]hexyl) naphthyridone antimicrobial. Diagn Microbiol Infect Dis. 1994 Aug;19(4):235–243. doi: 10.1016/0732-8893(94)90037-x. [DOI] [PubMed] [Google Scholar]
  21. Havlichek D., Saravolatz L., Pohlod D. Effect of quinolones and other antimicrobial agents on cell-associated Legionella pneumophila. Antimicrob Agents Chemother. 1987 Oct;31(10):1529–1534. doi: 10.1128/aac.31.10.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
  23. Leroy O., Beuscart C., Chidiac C., Sivery B., Senneville E., Vincent du Laurier M., Mouton Y. Traitement des pneumonies dues aux légionelles, mycoplasmes, Chlamydiae et rickettsies par l'ofloxacine. Pathol Biol (Paris) 1989 Dec;37(10):1137–1140. [PubMed] [Google Scholar]
  24. Meyer R. D. Role of the quinolones in the treatment of legionellosis. J Antimicrob Chemother. 1991 Nov;28(5):623–625. doi: 10.1093/jac/28.5.623. [DOI] [PubMed] [Google Scholar]
  25. Mouton Y., Leroy O., Beuscart C., Sivery B., Senneville E., Chidiac C., Beaucaire G., Vincent du Laurier M. Efficacy of intravenous ofloxacin: a French multicentre trial in 185 patients. J Antimicrob Chemother. 1990 Nov;26 (Suppl 500):115–121. doi: 10.1093/jac/26.suppl_d.115. [DOI] [PubMed] [Google Scholar]
  26. Peugeot R. L., Lipsky B. A., Hooton T. M., Pecoraro R. E. Treatment of lower respiratory infections in outpatients with ofloxacin compared with erythromycin. Drugs Exp Clin Res. 1991;17(5):253–257. [PubMed] [Google Scholar]
  27. Pohlod D. J., Saravolatz L. D., Somerville M. M. Inhibition of Legionella pneumophila multiplication within human macrophages by fleroxacin. J Antimicrob Chemother. 1988 Oct;22 (Suppl 500):49–54. doi: 10.1093/jac/22.supplement_d.49. [DOI] [PubMed] [Google Scholar]
  28. Saito A., Koga H., Shigeno H., Watanabe K., Mori K., Kohno S., Shigeno Y., Suzuyama Y., Yamaguchi K., Hirota M. The antimicrobial activity of ciprofloxacin against Legionella species and the treatment of experimental Legionella pneumonia in guinea pigs. J Antimicrob Chemother. 1986 Aug;18(2):251–260. doi: 10.1093/jac/18.2.251. [DOI] [PubMed] [Google Scholar]
  29. Saito A., Sawatari K., Fukuda Y., Nagasawa M., Koga H., Tomonaga A., Nakazato H., Fujita K., Shigeno Y., Suzuyama Y. Susceptibility of Legionella pneumophila to ofloxacin in vitro and in experimental Legionella pneumonia in guinea pigs. Antimicrob Agents Chemother. 1985 Jul;28(1):15–20. doi: 10.1128/aac.28.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stamler D. A., Edelstein M. A., Edelstein P. H. Azithromycin pharmacokinetics and intracellular concentrations in Legionella pneumophila-infected and uninfected guinea pigs and their alveolar macrophages. Antimicrob Agents Chemother. 1994 Feb;38(2):217–222. doi: 10.1128/aac.38.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Teng R., Harris S. C., Nix D. E., Schentag J. J., Foulds G., Liston T. E. Pharmacokinetics and safety of trovafloxacin (CP-99,219), a new quinolone antibiotic, following administration of single oral doses to healthy male volunteers. J Antimicrob Chemother. 1995 Aug;36(2):385–394. doi: 10.1093/jac/36.2.385. [DOI] [PubMed] [Google Scholar]
  32. Vildé J. L., Dournon E., Rajagopalan P. Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents. Antimicrob Agents Chemother. 1986 Nov;30(5):743–748. doi: 10.1128/aac.30.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wynckel A., Toupance O., Melin J. P., David C., Lavaud S., Wong T., Lamiable D., Chanard J. Traitement des légionelloses par ofloxacine chez le transplanté rénal. Absence d'interférence avec la ciclosporine A. Presse Med. 1991 Feb 23;20(7):291–293. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES