Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Feb;40(2):342–348. doi: 10.1128/aac.40.2.342

In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins.

L Martínez-Martínez 1, S Hernández-Allés 1, S Albertí 1, J M Tomás 1, V J Benedi 1, G A Jacoby 1
PMCID: PMC163113  PMID: 8834877

Abstract

Four Klebsiella pneumoniae isolates (LB1, LB2, LB3, and LB4) with increased antimicrobial resistance were obtained from the same patient. The four isolates were indistinguishable in biotype, plasmid content, lipopolysaccharide, and DNA analysis by pulse-field gel electrophoresis. Isolate LB1 made TEM-1 and SHV-1 beta-lactamases. Isolates LB2, LB3, and LB4 produced SHV-5 in addition to TEM-1 and SHV-1. MICs of cefoxitin, ceftazidime, and cefotaxime against LB1 were 4, 1, and 0.06 micrograms/ml, respectively. MICs of ceftazidime against K. pneumoniae LB2, LB3, and LB4 were > 256 micrograms/ml, and those of cefotaxime were 2, 4, and 64 micrograms/ml, respectively. MICs of cefoxitin against K. pneumoniae LB2 and LB3 were 4 micrograms/ml, but that against K. pneumoniae LB4 was 128 micrgrams/ml. K. pneumoniae LB4 could transfer resistance to ceftazidime and cefotaxime, but not that to cefoxitin, to Escherichia coli. Isolate LB4 and cefoxitin-resistant laboratory mutants lacked an outer membrane protein of about 35 kDa whose molecular mass, mode of isolation, resistance to proteases, and reaction with a porin-specific antiserum suggested that it was a porin. MICs of cefoxitin and cefotaxime reverted to 4 and 2 micrograms/ml, respectively, when isolate LB4 was transformed with a gene coding for the K. pneumoniae porin OmpK36. We conclude that the increased resistance to cefoxitin and expanded-spectrum cephalosporins of isolate LB4 was due to loss of a porin channel for antibiotic uptake.

Full Text

The Full Text of this article is available as a PDF (469.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertí S., Marqués G., Camprubí S., Merino S., Tomás J. M., Vivanco F., Benedí V. J. C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins. Infect Immun. 1993 Mar;61(3):852–860. doi: 10.1128/iai.61.3.852-860.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertí S., Rodríquez-Quiñones F., Schirmer T., Rummel G., Tomás J. M., Rosenbusch J. P., Benedí V. J. A porin from Klebsiella pneumoniae: sequence homology, three-dimensional model, and complement binding. Infect Immun. 1995 Mar;63(3):903–910. doi: 10.1128/iai.63.3.903-910.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  4. Carpenter J. L. Klebsiella pulmonary infections: occurrence at one medical center and review. Rev Infect Dis. 1990 Jul-Aug;12(4):672–682. doi: 10.1093/clinids/12.4.672. [DOI] [PubMed] [Google Scholar]
  5. Coetzee J. N., Datta N., Hedges R. W. R factors from Proteus rettgeri. J Gen Microbiol. 1972 Oct;72(3):543–552. doi: 10.1099/00221287-72-3-543. [DOI] [PubMed] [Google Scholar]
  6. Cohen S. P., Yan W., Levy S. B. A multidrug resistance regulatory chromosomal locus is widespread among enteric bacteria. J Infect Dis. 1993 Aug;168(2):484–488. doi: 10.1093/infdis/168.2.484. [DOI] [PubMed] [Google Scholar]
  7. Dhaese P., De Greve H., Decraemer H., Schell J., Van Montagu M. Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucleic Acids Res. 1979 Dec 11;7(7):1837–1849. doi: 10.1093/nar/7.7.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Domenico P., Marx J. L., Schoch P. E., Cunha B. A. Rapid plasmid DNA isolation from mucoid gram-negative bacteria. J Clin Microbiol. 1992 Nov;30(11):2859–2863. doi: 10.1128/jcm.30.11.2859-2863.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herrero M., de Lorenzo V., Timmis K. N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol. 1990 Nov;172(11):6557–6567. doi: 10.1128/jb.172.11.6557-6567.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacoby G. A. Genetics of extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis. 1994;13 (Suppl 1):S2–11. doi: 10.1007/BF02390679. [DOI] [PubMed] [Google Scholar]
  12. Jacoby G. A., Medeiros A. A. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Sep;35(9):1697–1704. doi: 10.1128/aac.35.9.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaffé A., Chabbert Y. A., Derlot E. Selection and characterization of beta-lactam-resistant Escherichia coli K-12 mutants. Antimicrob Agents Chemother. 1983 Apr;23(4):622–625. doi: 10.1128/aac.23.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaneko M., Yamaguchi A., Sawai T. Purification and characterization of two kinds of porins from the Enterobacter cloacae outer membrane. J Bacteriol. 1984 Jun;158(3):1179–1181. doi: 10.1128/jb.158.3.1179-1181.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Korvick J. A., Bryan C. S., Farber B., Beam T. R., Jr, Schenfeld L., Muder R. R., Weinbaum D., Lumish R., Gerding D. N., Wagener M. M. Prospective observational study of Klebsiella bacteremia in 230 patients: outcome for antibiotic combinations versus monotherapy. Antimicrob Agents Chemother. 1992 Dec;36(12):2639–2644. doi: 10.1128/aac.36.12.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Mathew A., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975 May;88(1):169–178. doi: 10.1099/00221287-88-1-169. [DOI] [PubMed] [Google Scholar]
  18. Medeiros A. A., O'Brien T. F., Rosenberg E. Y., Nikaido H. Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis. 1987 Nov;156(5):751–757. doi: 10.1093/infdis/156.5.751. [DOI] [PubMed] [Google Scholar]
  19. Meyer K. S., Urban C., Eagan J. A., Berger B. J., Rahal J. J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993 Sep 1;119(5):353–358. doi: 10.7326/0003-4819-119-5-199309010-00001. [DOI] [PubMed] [Google Scholar]
  20. Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother. 1989 Nov;33(11):1831–1836. doi: 10.1128/aac.33.11.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nikaido H. Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor protein. Methods Enzymol. 1983;97:85–100. doi: 10.1016/0076-6879(83)97122-7. [DOI] [PubMed] [Google Scholar]
  22. Pangon B., Bizet C., Buré A., Pichon F., Philippon A., Regnier B., Gutmann L. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 beta-lactamase. J Infect Dis. 1989 May;159(5):1005–1006. doi: 10.1093/infdis/159.5.1005. [DOI] [PubMed] [Google Scholar]
  23. Papanicolaou G. A., Medeiros A. A., Jacoby G. A. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1990 Nov;34(11):2200–2209. doi: 10.1128/aac.34.11.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Philippon A. M., Paul G. C., Jacoby G. A. Properties of PSE-2 beta-lactamase and genetic basis for its production in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1983 Sep;24(3):362–369. doi: 10.1128/aac.24.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Philippon A., Labia R., Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989 Aug;33(8):1131–1136. doi: 10.1128/aac.33.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reguera J. A., Baquero F., Pérez-Díaz J. C., Martínez J. L. Factors determining resistance to beta-lactam combined with beta-lactamase inhibitors in Escherichia coli. J Antimicrob Chemother. 1991 May;27(5):569–575. doi: 10.1093/jac/27.5.569. [DOI] [PubMed] [Google Scholar]
  27. Rice L. B., Carias L. L., Etter L., Shlaes D. M. Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae: evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms. Antimicrob Agents Chemother. 1993 May;37(5):1061–1064. doi: 10.1128/aac.37.5.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rice L. B., Willey S. H., Papanicolaou G. A., Medeiros A. A., Eliopoulos G. M., Moellering R. C., Jr, Jacoby G. A. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother. 1990 Nov;34(11):2193–2199. doi: 10.1128/aac.34.11.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sadowski P. L., Peterson B. C., Gerding D. N., Cleary P. P. Physical characterization of ten R plasmids obtained from an outbreak of nosocomial Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 1979 Apr;15(4):616–624. doi: 10.1128/aac.15.4.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanders C. C., Sanders W. E., Jr, Goering R. V., Werner V. Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother. 1984 Dec;26(6):797–801. doi: 10.1128/aac.26.6.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Soussy C. J., Cluzel R., Courvalin P. Definition and determination of in vitro antibiotic susceptibility breakpoints for bacteria in France. The Comité de l'Antibiogramme de la Société Française de Microbiologie. Eur J Clin Microbiol Infect Dis. 1994 Mar;13(3):238–246. doi: 10.1007/BF01974543. [DOI] [PubMed] [Google Scholar]
  32. Tomás J. M., Benedí V. J., Ciurana B., Jofre J. Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun. 1986 Oct;54(1):85–89. doi: 10.1128/iai.54.1.85-89.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  35. Van der Ley P., Bekkers A., Van Meersbergen J., Tommassen J. A comparative study on the phoE genes of three enterobacterial species. Implications for structure-function relationships in a pore-forming protein of the outer membrane. Eur J Biochem. 1987 Apr 15;164(2):469–475. doi: 10.1111/j.1432-1033.1987.tb11080.x. [DOI] [PubMed] [Google Scholar]
  36. Walter E. G., Taylor D. E. Comparison of tellurite resistance determinants from the IncP alpha plasmid RP4Ter and the IncHII plasmid pHH1508a. J Bacteriol. 1989 Apr;171(4):2160–2165. doi: 10.1128/jb.171.4.2160-2165.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Werts C., Charbit A., Bachellier S., Hofnung M. DNA sequence analysis of the lamB gene from Klebsiella pneumoniae: implications for the topology and the pore functions in maltoporin. Mol Gen Genet. 1992 Jun;233(3):372–378. doi: 10.1007/BF00265433. [DOI] [PubMed] [Google Scholar]
  38. van de Klundert J. A., van Gestel M. H., Meerdink G., de Marie S. Emergence of bacterial resistance to cefamandole in vivo due to outer membrane protein deficiency. Eur J Clin Microbiol Infect Dis. 1988 Dec;7(6):776–778. doi: 10.1007/BF01975046. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES