Abstract
The development of new drugs and vaccines directed against Mycobacterium tuberculosis is severely impeded by the slow growth of this organism and the need to work under stringent biosafety conditions. These difficulties pose considerable obstacles when animal studies with M. tuberculosis are performed. We investigated whether a novel approach termed luciferase in vivo expression, using an enhanced luciferase-expressing mycobacterial strain, could be used to evaluate antimycobacterial activity in mice. Vectors that expressed firefly luciferase (lux gene) at high levels in the bacillus Calmette-Gu-erin (BCG) strain of Mycobacterium bovis were constructed for use in vivo. One recombinant BCG reporter strain (rBCG-lux) was selected for high-level expression of the lux gene product and for its ability to replicate in mice. Methodology to monitor in vivo growth of the rBCG-lux reporter strain in mice by direct assay of luciferase luminescence in organ homogenates was developed. The utility of this approach for assessing the in vivo efficacies of antimycobacterial compounds was evaluated. The activities of standard antimycobacterial drugs were directly apparent in mice infected with the rBCG-lux reporter strain by statistically significant reductions in spleen luminescence. In addition, antimycobacterial immunity was also evident in BCG-immunized mice, in which suppression of rBCG-lux growth in comparison with that in naive mice was clearly observed. The use of luciferase in vivo expression for the in vivo evaluation of antimycobacterial activity compared favorably with standard CFU determinations in terms of time, labor, expense, and statistical significance but permitted the evaluation of antimycobacterial drugs and immunity in mice in 7 days or less. Thus, the use of this technology can greatly accelerate the process of evaluation of antibiotics and immunogens in animal models for the slowly growing pathogenic mycobacteria.
Full Text
The Full Text of this article is available as a PDF (245.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrew P. W., Roberts I. S. Construction of a bioluminescent mycobacterium and its use for assay of antimycobacterial agents. J Clin Microbiol. 1993 Sep;31(9):2251–2254. doi: 10.1128/jcm.31.9.2251-2254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bermudez L. E., Young L. S. Activities of amikacin, roxithromycin, and azithromycin alone or in combination with tumor necrosis factor against Mycobacterium avium complex. Antimicrob Agents Chemother. 1988 Aug;32(8):1149–1153. doi: 10.1128/aac.32.8.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlone N. A., Acocella G., Cuffini A. M., Forno-Pizzoglio M. Killing of macrophage-ingested mycobacteria by rifampicin, pyrazinamide, and pyrazinoic acid alone and in combination. Am Rev Respir Dis. 1985 Dec;132(6):1274–1277. doi: 10.1164/arrd.1985.132.6.1274. [DOI] [PubMed] [Google Scholar]
- Collins F. M. Mycobacterial disease, immunosuppression, and acquired immunodeficiency syndrome. Clin Microbiol Rev. 1989 Oct;2(4):360–377. doi: 10.1128/cmr.2.4.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooksey R. C., Crawford J. T., Jacobs W. R., Jr, Shinnick T. M. A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother. 1993 Jun;37(6):1348–1352. doi: 10.1128/aac.37.6.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooksey R. C., Morlock G. P., Beggs M., Crawford J. T. Bioluminescence method to evaluate antimicrobial agents against Mycobacterium avium. Antimicrob Agents Chemother. 1995 Mar;39(3):754–756. doi: 10.1128/AAC.39.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper A. M., Dalton D. K., Stewart T. A., Griffin J. P., Russell D. G., Orme I. M. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993 Dec 1;178(6):2243–2247. doi: 10.1084/jem.178.6.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frothingham R., Hills H. G., Wilson K. H. Extensive DNA sequence conservation throughout the Mycobacterium tuberculosis complex. J Clin Microbiol. 1994 Jul;32(7):1639–1643. doi: 10.1128/jcm.32.7.1639-1643.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gangadharam P. R., Reddy M. V. Contributions of animal and macrophage models to the understanding of host parasite interaction of Mycobacterium avium complex (MAC) disease. Res Microbiol. 1994 Mar-Apr;145(3):214–224. doi: 10.1016/0923-2508(94)90021-3. [DOI] [PubMed] [Google Scholar]
- González-Flecha B., Demple B. Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. J Bacteriol. 1994 Apr;176(8):2293–2299. doi: 10.1128/jb.176.8.2293-2299.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs W. R., Jr, Barletta R. G., Udani R., Chan J., Kalkut G., Sosne G., Kieser T., Sarkis G. J., Hatfull G. F., Bloom B. R. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science. 1993 May 7;260(5109):819–822. doi: 10.1126/science.8484123. [DOI] [PubMed] [Google Scholar]
- Ji B., Truffot-Pernot C., Lacroix C., Raviglione M. C., O'Brien R. J., Olliaro P., Roscigno G., Grosset J. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis. 1993 Dec;148(6 Pt 1):1541–1546. doi: 10.1164/ajrccm/148.6_Pt_1.1541. [DOI] [PubMed] [Google Scholar]
- Klemens S. P., DeStefano M. S., Cynamon M. H. Therapy of multidrug-resistant tuberculosis: lessons from studies with mice. Antimicrob Agents Chemother. 1993 Nov;37(11):2344–2347. doi: 10.1128/aac.37.11.2344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemens S. P., Grossi M. A., Cynamon M. H. Activity of KRM-1648, a new benzoxazinorifamycin, against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother. 1994 Oct;38(10):2245–2248. doi: 10.1128/aac.38.10.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemens S. P., Sharpe C. A., Rogge M. C., Cynamon M. H. Activity of levofloxacin in a murine model of tuberculosis. Antimicrob Agents Chemother. 1994 Jul;38(7):1476–1479. doi: 10.1128/aac.38.7.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kremer L., Baulard A., Estaquier J., Poulain-Godefroy O., Locht C. Green fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol. 1995 Sep;17(5):913–922. doi: 10.1111/j.1365-2958.1995.mmi_17050913.x. [DOI] [PubMed] [Google Scholar]
- Lee M. H., Pascopella L., Jacobs W. R., Jr, Hatfull G. F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111–3115. doi: 10.1073/pnas.88.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meighen E. A. Molecular biology of bacterial bioluminescence. Microbiol Rev. 1991 Mar;55(1):123–142. doi: 10.1128/mr.55.1.123-142.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mor N., Heifets L. MICs and MBCs of clarithromycin against Mycobacterium avium within human macrophages. Antimicrob Agents Chemother. 1993 Jan;37(1):111–114. doi: 10.1128/aac.37.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rastogi N., Labrousse V., Goh K. S., De Sousa J. P. Antimycobacterial spectrum of sparfloxacin and its activities alone and in association with other drugs against Mycobacterium avium complex growing extracellularly and intracellularly in murine and human macrophages. Antimicrob Agents Chemother. 1991 Dec;35(12):2473–2480. doi: 10.1128/aac.35.12.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raviglione M. C., Snider D. E., Jr, Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA. 1995 Jan 18;273(3):220–226. [PubMed] [Google Scholar]
- Saito H., Tomioka H., Sato K., Emori M., Yamane T., Yamashita K., Hosoe K., Hidaka T. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob Agents Chemother. 1991 Mar;35(3):542–547. doi: 10.1128/aac.35.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkis G. J., Jacobs W. R., Jr, Hatfull G. F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol. 1995 Mar;15(6):1055–1067. doi: 10.1111/j.1365-2958.1995.tb02281.x. [DOI] [PubMed] [Google Scholar]
- Sarmientos P., Sylvester J. E., Contente S., Cashel M. Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids. Cell. 1983 Apr;32(4):1337–1346. doi: 10.1016/0092-8674(83)90314-8. [DOI] [PubMed] [Google Scholar]
- Simpson W. J., Hammond J. R. The effect of detergents on firefly luciferase reactions. J Biolumin Chemilumin. 1991 Apr-Jun;6(2):97–106. doi: 10.1002/bio.1170060207. [DOI] [PubMed] [Google Scholar]
- Smee D. F., Burger R. A., Coombs J., Huffman J. H., Sidwell R. W. Progressive murine cytomegalovirus disease after termination of ganciclovir therapy in mice immunosuppressed by cyclophosphamide treatment. J Infect Dis. 1991 Nov;164(5):958–961. doi: 10.1093/infdis/164.5.958. [DOI] [PubMed] [Google Scholar]
- Stover C. K., Bansal G. P., Hanson M. S., Burlein J. E., Palaszynski S. R., Young J. F., Koenig S., Young D. B., Sadziene A., Barbour A. G. Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med. 1993 Jul 1;178(1):197–209. doi: 10.1084/jem.178.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F. New use of BCG for recombinant vaccines. Nature. 1991 Jun 6;351(6326):456–460. doi: 10.1038/351456a0. [DOI] [PubMed] [Google Scholar]
- Truffot-Pernot C., Ji B., Grosset J. Activities of pefloxacin and ofloxacin against mycobacteria: in vitro and mouse experiments. Tubercle. 1991 Mar;72(1):57–64. doi: 10.1016/0041-3879(91)90025-n. [DOI] [PubMed] [Google Scholar]