Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Feb;40(2):433–436. doi: 10.1128/aac.40.2.433

Anticytomegaloviral activity of methotrexate associated with preferential accumulation of drug by cytomegalovirus-infected cells.

M Wachsman 1, F M Hamzeh 1, H Saito 1, P S Lietman 1
PMCID: PMC163129  PMID: 8834893

Abstract

We extend the observation that inhibitors of pyrimidine biosynthesis are active against human cytomegalovirus by demonstrating that methotrexate (MTX) has preferential activity against cytomegalovirus replication. The 50% and 90% inhibitory concentrations of MTX for inhibition of cytomegaloviral DNA replication at 3 days postinfection in MRC-5 cells were 0.05 and 0.2 microM, respectively. No cell toxicity was observed in uninfected confluent cells at the highest concentration tested (1 microM). Under similar conditions (3 days of treatment with 0.2 microM MTX), intracellular dTTP pools were diminished in cytomegalovirus-infected cells (87% decrease relative to untreated infected cells, P < 0.001) but were not reduced in uninfected cells. A potential explanation for the preferential antiviral effect of MTX was that human cytomegalovirus-infected cells preferentially accumulated MTX. Increased intracellular accumulation and increased polyglutamation of MTX were observed in cytomegalovirus-infected cells compared with uninfected cells. Increased uptake of [3H]MTX by cytomegalovirus-infected cells was first observed at 48 h postinfection, with threefold-higher accumulation within infected cells. By 96 h, accumulation had increased to approximately fourfold in comparison with uninfected cells. The uptake of [3H]MTX was saturable and was blocked by addition of unlabelled MTX. Intracellular MTX in infected cells was almost entirely in the polyglutamated form, as demonstrated by thin-layer chromatography, whereas intracellular MTX was almost exclusively in the parent form in uninfected cells.

Full Text

The Full Text of this article is available as a PDF (199.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. Antiviral therapy: current concepts and practices. Clin Microbiol Rev. 1992 Apr;5(2):146–182. doi: 10.1128/cmr.5.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bermudez L. E., Kolonoski P., Young L. S., Inderlied C. B. Activity of KRM 1648 alone or in combination with ethambutol or clarithromycin against Mycobacterium avium in beige mouse model of disseminated infection. Antimicrob Agents Chemother. 1994 Aug;38(8):1844–1848. doi: 10.1128/aac.38.8.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertram M. A., Inderlied C. B., Yadegar S., Kolanoski P., Yamada J. K., Young L. S. Confirmation of the beige mouse model for study of disseminated infection with Mycobacterium avium complex. J Infect Dis. 1986 Jul;154(1):194–195. doi: 10.1093/infdis/154.1.194. [DOI] [PubMed] [Google Scholar]
  4. Betts R. F. Cytomegalovirus infection epidemiology and biology in adults. Semin Perinatol. 1983 Jan;7(1):22–30. [PubMed] [Google Scholar]
  5. Biron K. K., Fyfe J. A., Stanat S. C., Leslie L. K., Sorrell J. B., Lambe C. U., Coen D. M. A human cytomegalovirus mutant resistant to the nucleoside analog 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8769–8773. doi: 10.1073/pnas.83.22.8769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A., 3rd, Kouzarides T., Martignetti J. A. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol. 1990;154:125–169. doi: 10.1007/978-3-642-74980-3_6. [DOI] [PubMed] [Google Scholar]
  7. Chello P. L., Sirotnak F. M., Dorick D. M. Alterations in the kinetics of methotrexate transport during growth of L1210 murine leukemia cells in culture. Mol Pharmacol. 1980 Sep;18(2):274–280. [PubMed] [Google Scholar]
  8. Doucet-Populaire F., Truffot-Pernot C., Grosset J., Jarlier V. Acquired resistance in Mycobacterium avium complex strains isolated from AIDS patients and beige mice during treatment with clarithromycin. J Antimicrob Chemother. 1995 Jul;36(1):129–136. doi: 10.1093/jac/36.1.129. [DOI] [PubMed] [Google Scholar]
  9. Emori M., Saito H., Sato K., Tomioka H., Setogawa T., Hidaka T. Therapeutic efficacy of the benzoxazinorifamycin KRM-1648 against experimental Mycobacterium avium infection induced in rabbits. Antimicrob Agents Chemother. 1993 Apr;37(4):722–728. doi: 10.1128/aac.37.4.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Estes J. E., Huang E. S. Stimulation of cellular thymidine kinases by human cytomegalovirus. J Virol. 1977 Oct;24(1):13–21. doi: 10.1128/jvi.24.1.13-21.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fernandes P. B., Hardy D. J., McDaniel D., Hanson C. W., Swanson R. N. In vitro and in vivo activities of clarithromycin against Mycobacterium avium. Antimicrob Agents Chemother. 1989 Sep;33(9):1531–1534. doi: 10.1128/aac.33.9.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fiala M., Mosca J. D., Barry P., Luciw P. A., Vinters H. V. Multi-step pathogenesis of AIDS--role of cytomegalovirus. Res Immunol. 1991 Feb;142(2):87–95. doi: 10.1016/0923-2494(91)90016-c. [DOI] [PubMed] [Google Scholar]
  13. Fry D. W., Anderson L. A., Borst M., Goldman I. D. Analysis of the role of membrane transport and polyglutamation of methotrexate in gut and the Ehrlich tumor in vivo as factors in drug sensitivity and selectivity. Cancer Res. 1983 Mar;43(3):1087–1092. [PubMed] [Google Scholar]
  14. Fujii K., Saito H., Tomioka H., Mae T., Hosoe K. Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648. Antimicrob Agents Chemother. 1995 Jul;39(7):1489–1492. doi: 10.1128/aac.39.7.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fujii K., Tsuji A., Miyazaki S., Yamaguchi K., Goto S. In vitro and in vivo antibacterial activities of KRM-1648 and KRM-1657, new rifamycin derivatives. Antimicrob Agents Chemother. 1994 May;38(5):1118–1122. doi: 10.1128/aac.38.5.1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gangadharam P. R., Perumal V. K., Jairam B. T., Rao P. N., Nguyen A. K., Farhi D. C., Iseman M. D. Activity of rifabutin alone or in combination with clofazimine or ethambutol or both against acute and chronic experimental Mycobacterium intracellulare infections. Am Rev Respir Dis. 1987 Aug;136(2):329–333. doi: 10.1164/ajrccm/136.2.329. [DOI] [PubMed] [Google Scholar]
  17. Gerlier D., Thomasset N. Use of MTT colorimetric assay to measure cell activation. J Immunol Methods. 1986 Nov 20;94(1-2):57–63. doi: 10.1016/0022-1759(86)90215-2. [DOI] [PubMed] [Google Scholar]
  18. Grosset J., Truffot C., Fermanian J., Lecoeur H. Activité stérilisante des différents antibiotiques dans la tuberculose expérimentale de la souris. Pathol Biol (Paris) 1982 Jun;30(6):444–448. [PubMed] [Google Scholar]
  19. Hamzeh F. M., Lietman P. S., Gibson W., Hayward G. S. Identification of the lytic origin of DNA replication in human cytomegalovirus by a novel approach utilizing ganciclovir-induced chain termination. J Virol. 1990 Dec;64(12):6184–6195. doi: 10.1128/jvi.64.12.6184-6195.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hamzeh F. M., Lietman P. S. Intranuclear accumulation of subgenomic noninfectious human cytomegalovirus DNA in infected cells in the presence of ganciclovir. Antimicrob Agents Chemother. 1991 Sep;35(9):1818–1823. doi: 10.1128/aac.35.9.1818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hamzeh F. M., Spector T., Lietman P. S. 2-Acetylpyridine 5-[(dimethylamino)thiocarbonyl]-thiocarbonohydrazone (1110U81) potently inhibits human cytomegalovirus replication and potentiates the antiviral effects of ganciclovir. Antimicrob Agents Chemother. 1993 Mar;37(3):602–604. doi: 10.1128/aac.37.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heifets L., Mor N., Vanderkolk J. Mycobacterium avium strains resistant to clarithromycin and azithromycin. Antimicrob Agents Chemother. 1993 Nov;37(11):2364–2370. doi: 10.1128/aac.37.11.2364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hunting D., Henderson J. F. Determination of deoxyribonucleoside triphosphates using DNA polymerase: a critical evaluation. Can J Biochem. 1981 Sep;59(9):723–727. doi: 10.1139/o81-100. [DOI] [PubMed] [Google Scholar]
  24. Inderlied C. B., Barbara-Burnham L., Wu M., Young L. S., Bermudez L. E. Activities of the benzoxazinorifamycin KRM 1648 and ethambutol against Mycobacterium avium complex in vitro and in macrophages. Antimicrob Agents Chemother. 1994 Aug;38(8):1838–1843. doi: 10.1128/aac.38.8.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ji B., Lounis N., Truffot-Pernot C., Grosset J. Effectiveness of various antimicrobial agents against Mycobacterium avium complex in the beige mouse model. Antimicrob Agents Chemother. 1994 Nov;38(11):2521–2529. doi: 10.1128/aac.38.11.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ji B., Lounis N., Truffot-Pernot C., Grosset J. Selection of resistant mutants of Mycobacterium avium in beige mice by clarithromycin monotherapy. Antimicrob Agents Chemother. 1992 Dec;36(12):2839–2840. doi: 10.1128/aac.36.12.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ji B., Truffot-Pernot C., Lacroix C., Raviglione M. C., O'Brien R. J., Olliaro P., Roscigno G., Grosset J. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis. 1993 Dec;148(6 Pt 1):1541–1546. doi: 10.1164/ajrccm/148.6_Pt_1.1541. [DOI] [PubMed] [Google Scholar]
  28. Karlsson A., Harmenberg J. Effects of ribonucleotide reductase inhibition on pyrimidine deoxynucleotide metabolism in acyclovir-treated cells infected with herpes simplex virus type 1. Antimicrob Agents Chemother. 1988 Jul;32(7):1100–1102. doi: 10.1128/aac.32.7.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Klemens S. P., Cynamon M. H. Activity of rifapentine against Mycobacterium avium infection in beige mice. J Antimicrob Chemother. 1992 May;29(5):555–561. doi: 10.1093/jac/29.5.555. [DOI] [PubMed] [Google Scholar]
  30. Klemens S. P., Cynamon M. H. In vivo activities of newer rifamycin analogs against Mycobacterium avium infection. Antimicrob Agents Chemother. 1991 Oct;35(10):2026–2030. doi: 10.1128/aac.35.10.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Klemens S. P., Grossi M. A., Cynamon M. H. Activity of KRM-1648, a new benzoxazinorifamycin, against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother. 1994 Oct;38(10):2245–2248. doi: 10.1128/aac.38.10.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Klemens S. P., Grossi M. A., Cynamon M. H. Comparative in vivo activities of rifabutin and rifapentine against Mycobacterium avium complex. Antimicrob Agents Chemother. 1994 Feb;38(2):234–237. doi: 10.1128/aac.38.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lewis R. A., Watkins L., St Jeor S. Enhancement of deoxyguanosine kinase activity in human lung fibroblast cells infected with human cytomegalovirus. Mol Cell Biochem. 1984 Nov;65(1):67–71. doi: 10.1007/BF00226020. [DOI] [PubMed] [Google Scholar]
  34. Lewis R. A., Watkins L., St Jeor S. Enhancement of deoxyguanosine kinase activity in human lung fibroblast cells infected with human cytomegalovirus. Mol Cell Biochem. 1984 Nov;65(1):67–71. doi: 10.1007/BF00226020. [DOI] [PubMed] [Google Scholar]
  35. Lounis N., Ji B., Truffot-Pernot C., Grosset J. Selection of clarithromycin-resistant Mycobacterium avium complex during combined therapy using the beige mouse model. Antimicrob Agents Chemother. 1995 Mar;39(3):608–612. doi: 10.1128/AAC.39.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nutter L. M., Grill S. P., Dutschman G. E., Sharma R. A., Bobek M., Cheng Y. C. Demonstration of viral thymidine kinase inhibitor and its effect on deoxynucleotide metabolism in cells infected with herpes simplex virus. Antimicrob Agents Chemother. 1987 Mar;31(3):368–374. doi: 10.1128/aac.31.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reichert C. M., O'Leary T. J., Levens D. L., Simrell C. R., Macher A. M. Autopsy pathology in the acquired immune deficiency syndrome. Am J Pathol. 1983 Sep;112(3):357–382. [PMC free article] [PubMed] [Google Scholar]
  38. Saito H., Tomioka H., Sato K., Emori M., Yamane T., Yamashita K., Hosoe K., Hidaka T. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob Agents Chemother. 1991 Mar;35(3):542–547. doi: 10.1128/aac.35.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. St Jeor S. C., Hutt R. Cell DNA replication as a function in the synthesis of human cytomegalovirus. J Gen Virol. 1977 Oct;37(1):65–73. doi: 10.1099/0022-1317-37-1-65. [DOI] [PubMed] [Google Scholar]
  40. Tomioka H., Saito H., Fujii K., Sato K., Hidaka T. In vitro antimicrobial activity of benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex, determined by the radiometric method. Antimicrob Agents Chemother. 1993 Jan;37(1):67–70. doi: 10.1128/aac.37.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tomioka H., Saito H., Sato K., Yamane T., Yamashita K., Hosoe K., Fujii K., Hidaka T. Chemotherapeutic efficacy of a newly synthesized benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex infection induced in mice. Antimicrob Agents Chemother. 1992 Feb;36(2):387–393. doi: 10.1128/aac.36.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wade M., Kowalik T. F., Mudryj M., Huang E. S., Azizkhan J. C. E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol Cell Biol. 1992 Oct;12(10):4364–4374. doi: 10.1128/mcb.12.10.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wong B., Edwards F. F., Kiehn T. E., Whimbey E., Donnelly H., Bernard E. M., Gold J. W., Armstrong D. Continuous high-grade mycobacterium avium-intracellulare bacteremia in patients with the acquired immune deficiency syndrome. Am J Med. 1985 Jan;78(1):35–40. doi: 10.1016/0002-9343(85)90458-9. [DOI] [PubMed] [Google Scholar]
  44. Yamane T., Hashizume T., Yamashita K., Konishi E., Hosoe K., Hidaka T., Watanabe K., Kawaharada H., Yamamoto T., Kuze F. Synthesis and biological activity of 3'-hydroxy-5'-aminobenzoxazinorifamycin derivatives. Chem Pharm Bull (Tokyo) 1993 Jan;41(1):148–155. doi: 10.1248/cpb.41.148. [DOI] [PubMed] [Google Scholar]
  45. de Smet M. D. Differential diagnosis of retinitis and choroiditis in patients with acquired immunodeficiency syndrome. Am J Med. 1992 Feb 14;92(2A):17S–21S. doi: 10.1016/0002-9343(92)90332-6. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES