Abstract
Squalene epoxidase (SE) is the primary target of the allylamine antimycotic agents terbinafine and naftifine and also of the thiocarbamates. Although all of these drugs are employed primarily in dermatological therapy, SE from dermatophyte fungi has not been previously investigated. We report here the biochemical characterization of SE activity from Trichophyton rubrum and the effects of terbinafine and other inhibitors. Microsomal SE activity from T. rubrum was not dependent on soluble cytoplasmic factors but had an absolute requirement for NADPH or NADH and was stimulated by flavin adenine dinucleotide. Kinetic analyses revealed that under optimal conditions the Km for squalene was 13 microM and its Vmax was 0.71 nmol/h/mg of protein. Terbinafine was the most potent inhibitor tested, with a 50% inhibitory concentration (IC50) of 15.8 nM. This inhibition was noncompetitive with regard to the substrate squalene. A structure-activity relationship study with some analogs of terbinafine indicated that the tertiary amino structure of terbinafine was crucial for its high potency, as well as the tert-alkyl side chain. Naftifine had a lower potency (IC50, 114.6 nM) than terbinafine. Inhibition was also demonstrated by the thiocarbamates tolciclate (IC50, 28.0 nM) and tolnaftate (IC50, 51.5 nM). Interestingly, the morpholine amorolfine also displayed a weak but significant effect (IC50, 30 microM). T. rubrum SE was only slightly more sensitive (approximately twofold) to terbinafine inhibition than was the Candida albicans enzyme. Therefore, this difference cannot fully explain the much higher susceptibility (> or = 100-fold) of dermatophytes than of yeasts to this drug. The sensitivity to terbinafine of ergosterol biosynthesis in whole cells of T. rubrum (IC50, 1.5 nM) is 10-fold higher than that of SE activity, suggesting that the drug accumulates in the fungus.
Full Text
The Full Text of this article is available as a PDF (269.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe I., Tomesch J. C., Wattanasin S., Prestwich G. D. Inhibitors of squalene biosynthesis and metabolism. Nat Prod Rep. 1994 Jun;11(3):279–302. doi: 10.1039/np9941100279. [DOI] [PubMed] [Google Scholar]
- Bai M., Prestwich G. D. Inhibition and activation of porcine squalene epoxidase. Arch Biochem Biophys. 1992 Mar;293(2):305–313. doi: 10.1016/0003-9861(92)90400-q. [DOI] [PubMed] [Google Scholar]
- Barrett-Bee K. J., Lane A. C., Turner R. W. The mode of antifungal action of tolnaftate. J Med Vet Mycol. 1986 Apr;24(2):155–160. doi: 10.1080/02681218680000221. [DOI] [PubMed] [Google Scholar]
- Carneri I., Monti G., Bianchi A., Castellino S., Meinardi G., Mandelli V. Tolciclate against dermatophytes. Arzneimittelforschung. 1976;26(5):769–772. [PubMed] [Google Scholar]
- Friedlander E. J., Caras I. W., Lin L. F., Bloch K. Supernatant protein factor facilitates intermembrane transfer of squalene. J Biol Chem. 1980 Sep 10;255(17):8042–8045. [PubMed] [Google Scholar]
- Georgopapadakou N. H., Walsh T. J. Human mycoses: drugs and targets for emerging pathogens. Science. 1994 Apr 15;264(5157):371–373. doi: 10.1126/science.8153622. [DOI] [PubMed] [Google Scholar]
- Iyanagi T., Makino R., Anan F. K. Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase. Biochemistry. 1981 Mar 31;20(7):1722–1730. doi: 10.1021/bi00510a004. [DOI] [PubMed] [Google Scholar]
- Jahnke L., Klein H. P. Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol. 1983 Aug;155(2):488–492. doi: 10.1128/jb.155.2.488-492.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jandrositz A., Turnowsky F., Högenauer G. The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization. Gene. 1991 Oct 30;107(1):155–160. doi: 10.1016/0378-1119(91)90310-8. [DOI] [PubMed] [Google Scholar]
- M'Baya B., Karst F. In vitro assay of squalene epoxidase of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1987 Sep 15;147(2):556–564. doi: 10.1016/0006-291x(87)90967-3. [DOI] [PubMed] [Google Scholar]
- Moreau J. P., Ramm P. J., Caspi E. Biosynthesis of sterols by a yeast homogenate. Incorporation of mevalonic acid into cholesta-5,7,24-trien-3beta-ol and 5alpha-cholesta-7,24-dien-3beta-ol. Eur J Biochem. 1975 Aug 15;56(2):393–402. doi: 10.1111/j.1432-1033.1975.tb02245.x. [DOI] [PubMed] [Google Scholar]
- Morita T., Nozawa Y. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J Invest Dermatol. 1985 Nov;85(5):434–437. doi: 10.1111/1523-1747.ep12277141. [DOI] [PubMed] [Google Scholar]
- Nussbaumer P., Leitner I., Mraz K., Stütz A. Synthesis and structure-activity relationships of side-chain-substituted analogs of the allylamine antimycotic terbinafine lacking the central amino function. J Med Chem. 1995 May 12;38(10):1831–1836. doi: 10.1021/jm00010a029. [DOI] [PubMed] [Google Scholar]
- Nussbaumer P., Petranyi G., Stütz A. Synthesis and structure-activity relationships of benzo[b]thienylallylamine antimycotics. J Med Chem. 1991 Jan;34(1):65–73. doi: 10.1021/jm00105a011. [DOI] [PubMed] [Google Scholar]
- Ono T., Bloch K. Solubilization and partial characterization of rat liver squalene epoxidase. J Biol Chem. 1975 Feb 25;250(4):1571–1579. [PubMed] [Google Scholar]
- Ono T., Nakazono K., Kosaka H. Purification and partial characterization of squalene epoxidase from rat liver microsomes. Biochim Biophys Acta. 1982 Dec 6;709(1):84–90. doi: 10.1016/0167-4838(82)90424-1. [DOI] [PubMed] [Google Scholar]
- Ono T., Ozasa S., Hasegawa F., Imai Y. Involvement of NADPH-cytochrome c reductase in the rat liver squalene epoxidase system. Biochim Biophys Acta. 1977 Mar 25;486(3):401–407. [PubMed] [Google Scholar]
- Petranyi G., Meingassner J. G., Mieth H. Antifungal activity of the allylamine derivative terbinafine in vitro. Antimicrob Agents Chemother. 1987 Sep;31(9):1365–1368. doi: 10.1128/aac.31.9.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polak A. Mode of action of morpholine derivatives. Ann N Y Acad Sci. 1988;544:221–228. doi: 10.1111/j.1749-6632.1988.tb40406.x. [DOI] [PubMed] [Google Scholar]
- Ryder N. S., Dupont M. C. Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem J. 1985 Sep 15;230(3):765–770. doi: 10.1042/bj2300765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryder N. S., Dupont M. C. Properties of a particulate squalene epoxidase from Candida albicans. Biochim Biophys Acta. 1984 Jul 26;794(3):466–471. doi: 10.1016/0005-2760(84)90013-4. [DOI] [PubMed] [Google Scholar]
- Ryder N. S., Frank I., Dupont M. C. Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob Agents Chemother. 1986 May;29(5):858–860. doi: 10.1128/aac.29.5.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryder N. S. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci. 1988;544:208–220. doi: 10.1111/j.1749-6632.1988.tb40405.x. [DOI] [PubMed] [Google Scholar]
- Ryder N. S., Mieth H. Allylamine antifungal drugs. Curr Top Med Mycol. 1992;4:158–188. doi: 10.1007/978-1-4612-2762-5_6. [DOI] [PubMed] [Google Scholar]
- Ryder N. S., Seidl G., Troke P. F. Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans. Antimicrob Agents Chemother. 1984 Apr;25(4):483–487. doi: 10.1128/aac.25.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryder N. S. Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent. Antimicrob Agents Chemother. 1985 Feb;27(2):252–256. doi: 10.1128/aac.27.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryder N. S. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol. 1992 Feb;126 (Suppl 39):2–7. doi: 10.1111/j.1365-2133.1992.tb00001.x. [DOI] [PubMed] [Google Scholar]
- Sakakibara J., Watanabe R., Kanai Y., Ono T. Molecular cloning and expression of rat squalene epoxidase. J Biol Chem. 1995 Jan 6;270(1):17–20. doi: 10.1074/jbc.270.1.17. [DOI] [PubMed] [Google Scholar]
- Satoh T., Horie M., Watanabe H., Tsuchiya Y., Kamei T. Enzymatic properties of squalene epoxidase from Saccharomyces cerevisiae. Biol Pharm Bull. 1993 Apr;16(4):349–352. doi: 10.1248/bpb.16.349. [DOI] [PubMed] [Google Scholar]
- Stütz A., Petranyi G. Synthesis and antifungal activity of (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphtha lenemethanamine (SF 86-327) and related allylamine derivatives with enhanced oral activity. J Med Chem. 1984 Dec;27(12):1539–1543. doi: 10.1021/jm00378a003. [DOI] [PubMed] [Google Scholar]
- Wildfeuer A., Rozman T. Zur antimykotischen Wirkung von Tolciclat. Mykosen. 1984 Mar;27(3):142–152. [PubMed] [Google Scholar]