Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen which becomes heavily melanized in the presence of phenolic substrates such as L-dopa. Various drugs are known to bind to melanin with high affinity, including the antipsychotic agent trifluoperazine and the antimalarial agent chloroquine. We hypothesized that drugs which bind melanin may have different toxicities for melanized and nonmelanized C. neoformans cells. The effects of trifluoperazine and chloroquine or C. neoformans were determined by measuring cell viability after exposure to these drugs. Cell viability was measured by CFU determination and flow cytometry with propidium iodide staining. Melanized cells were more susceptible than nonmelanized cells to the fungicidal effects of trifluoperazine. Chloroquine had no fungicidal effect on either melanized or nonmelanized C. neoformans under the conditions studied. Flow cytometry of trifluoperazine-treated C. neoformans cells stained with the mitochondrial stain dihydrorhodamine 123 revealed fluorescence changes consistent with mitochondrial damage. Our results indicate that melanized and nonmelanized C. neoformans cells can differ in susceptibility to certain drugs and suggest that strategies which target melanin may be productive for antifungal-drug discovery.
Full Text
The Full Text of this article is available as a PDF (184.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blasi E., Barluzzi R., Mazzolla R., Tancini B., Saleppico S., Puliti M., Pitzurra L., Bistoni F. Role of nitric oxide and melanogenesis in the accomplishment of anticryptococcal activity by the BV-2 microglial cell line. J Neuroimmunol. 1995 Apr;58(1):111–116. doi: 10.1016/0165-5728(95)00016-u. [DOI] [PubMed] [Google Scholar]
- Casadevall A., Freundlich L. F., Marsh L., Scharff M. D. Extensive allelic variation in Cryptococcus neoformans. J Clin Microbiol. 1992 May;30(5):1080–1084. doi: 10.1128/jcm.30.5.1080-1084.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuck S. L., Sande M. A. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989 Sep 21;321(12):794–799. doi: 10.1056/NEJM198909213211205. [DOI] [PubMed] [Google Scholar]
- Currie B. P., Casadevall A. Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin Infect Dis. 1994 Dec;19(6):1029–1033. doi: 10.1093/clinids/19.6.1029. [DOI] [PubMed] [Google Scholar]
- Davis T. N., Urdea M. S., Masiarz F. R., Thorner J. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 1986 Nov 7;47(3):423–431. doi: 10.1016/0092-8674(86)90599-4. [DOI] [PubMed] [Google Scholar]
- Eilam Y., Polacheck I., Ben-Gigi G., Chernichovsky D. Activity of phenothiazines against medically important yeasts. Antimicrob Agents Chemother. 1987 May;31(5):834–836. doi: 10.1128/aac.31.5.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganapathi R., Grabowski D. Differential effect of the calmodulin inhibitor trifluoperazine in modulating cellular accumulation, retention and cytotoxicity of doxorubicin in progressively doxorubicin-resistant L1210 mouse leukemia cells. Lack of correlation between cellular doxorubicin levels and expression of resistance. Biochem Pharmacol. 1988 Jan 15;37(2):185–193. doi: 10.1016/0006-2952(88)90716-2. [DOI] [PubMed] [Google Scholar]
- Green L., Petersen B., Steimel L., Haeber P., Current W. Rapid determination of antifungal activity by flow cytometry. J Clin Microbiol. 1994 Apr;32(4):1088–1091. doi: 10.1128/jcm.32.4.1088-1091.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue S., Hasegawa K., Ito S., Wakamatsu K., Fujita K. Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin. Pigment Cell Res. 1993 Oct;6(5):354–358. doi: 10.1111/j.1600-0749.1993.tb00613.x. [DOI] [PubMed] [Google Scholar]
- Jacobson E. S., Tinnell S. B. Antioxidant function of fungal melanin. J Bacteriol. 1993 Nov;175(21):7102–7104. doi: 10.1128/jb.175.21.7102-7104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Hill W. B., Bennett J. E. New, special stain for histopathological diagnosis of cryptococcosis. J Clin Microbiol. 1981 Feb;13(2):383–387. doi: 10.1128/jcm.13.2.383-387.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacuara J. L., de Barioglio S. R., de Oliva P. P., Bernacchi A. S., de Culasso A. F., Castro J. A., Franke de Cazzulo B. M., Cazzulo J. J. Disruption of mitochondrial function as the basis of the trypanocidal effect of trifluoperazine on Trypanosoma cruzi. Experientia. 1991 Jun 15;47(6):612–616. doi: 10.1007/BF01949887. [DOI] [PubMed] [Google Scholar]
- Larsson B. S. Interaction between chemicals and melanin. Pigment Cell Res. 1993 Jun;6(3):127–133. doi: 10.1111/j.1600-0749.1993.tb00591.x. [DOI] [PubMed] [Google Scholar]
- Midha K. K., Hawes E. M., McKay G., Hubbard J. W., Korchinski E. D., Keegan D. L. Plasma concentrations of trifluoperazine following single low doses. Can Med Assoc J. 1983 Aug 15;129(4):324–324. [PMC free article] [PubMed] [Google Scholar]
- Rhodes J. C., Polacheck I., Kwon-Chung K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun. 1982 Jun;36(3):1175–1184. doi: 10.1128/iai.36.3.1175-1184.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothe G., Emmendörffer A., Oser A., Roesler J., Valet G. Flow cytometric measurement of the respiratory burst activity of phagocytes using dihydrorhodamine 123. J Immunol Methods. 1991 Apr 8;138(1):133–135. doi: 10.1016/0022-1759(91)90074-p. [DOI] [PubMed] [Google Scholar]
- Vázquez A., Tudela J., Varón R., García-Cánovas F. A kinetic study of the generation and decomposition of some phenothiazine free radicals formed during enzymatic oxidation of phenothiazines by peroxidase-hydrogen peroxide. Biochem Pharmacol. 1992 Sep 1;44(5):889–894. doi: 10.1016/0006-2952(92)90120-8. [DOI] [PubMed] [Google Scholar]
- Wang Y., Aisen P., Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun. 1995 Aug;63(8):3131–3136. doi: 10.1128/iai.63.8.3131-3136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Casadevall A. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl Environ Microbiol. 1994 Oct;60(10):3864–3866. doi: 10.1128/aem.60.10.3864-3866.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Casadevall A. Growth of Cryptococcus neoformans in presence of L-dopa decreases its susceptibility to amphotericin B. Antimicrob Agents Chemother. 1994 Nov;38(11):2648–2650. doi: 10.1128/aac.38.11.2648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 1994 Jul;62(7):3004–3007. doi: 10.1128/iai.62.7.3004-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson P. R. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol. 1994 Feb;176(3):656–664. doi: 10.1128/jb.176.3.656-664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yurkow E. J., McKenzie M. A. Characterization of hypoxia-dependent peroxide production in cultures of Saccharomyces cerevisiae using flow cytometry: a model for ischemic tissue destruction. Cytometry. 1993;14(3):287–293. doi: 10.1002/cyto.990140309. [DOI] [PubMed] [Google Scholar]