Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Mar;40(3):642–645. doi: 10.1128/aac.40.3.642

Pharmacokinetics of (-)-2'-3'-dideoxy-3'-thiacytidine in woodchucks.

P Rajagopalan 1, F D Boudinot 1, C K Chu 1, B C Tennant 1, B H Baldwin 1, R F Schinazi 1
PMCID: PMC163173  PMID: 8851586

Abstract

The woodchuck (Marmota monax) has proven to be a suitable animal model for studying hepatitis B virus (HBV) infection owing to similarities in the course of infection between woodchuck hepatitis virus (WHV) in woodchucks and HBV in humans. (-)-beta-L-2',3'-Dideoxy-3'-thiacytidine (3TC; lamivudine) is a nucleoside analog which has demonstrated antiviral activity against HBV as well as human immunodeficiency virus (HIV). The purpose of the present investigation was to characterize the pharmacokinetics of 3TC following intravenous and oral administration of 20 mg of 3TC per kg of body weight to woodchucks. Following intravenous administration, the concentrations of 3TC in plasma declined, with a terminal half-life of 2.84 +/- 0.85 h (mean +/- standard deviation). The systemic clearance and steady-state volume of distribution of 3TC were 0.22 +/- 0.078 liters/h/kg and 0.75 +/- 0.13 liters/kg, respectively. The renal clearance of the nucleoside analog was 0.063 +/- 0.016 liters/h/kg. The oral bioavailability of 3TC ranged from 18 to 54%. Allometric relationships between pharmacokinetic parameters and body weight developed by Hussey et al. (E.K. Hussey, K.H. Donn, M.J. Daniel, S.T. Hall, A.J. Harker, and G.L. Evans, J. Clin. Pharmacol. 34:975-977, 1994) were augmented by including data from woodchucks, monkeys (S.M. Blaney, M.J. Daniel, A.J. Harker, K. Godwin, and F.M. Balis, Antimicrob. Agents Chemother. 39:2779-2782, 1995), and additional data from rats (P. Rajagopalan, L. Moore, C.K. Chu, R.F. Schinazi, and F.D. Boudinot, submitted for publication). Interspecies scaling of the pharmacokinetic parameters of 3TC demonstrated a good correlation between clearance (0.74 . W0.76 [where W is body weight]; r = 0.93; P < 0.025), apparent volume of distribution (1.62 . W0.81; r = 0.98; P < 0.005), and steady-state volume of distribution (1.09 . W0.94; r = 0.99; P < 0.05) and species body weight. The allometric relationships for clearance and volume of distribution at steady state predicted the observed pharmacokinetic parameters in humans quite well; however, the apparent volume of distribution was underestimated in humans. Thus, the pharmacokinetic data obtained with the woodchuck HBV animal model should be useful for designing clinical trials.

Full Text

The Full Text of this article is available as a PDF (194.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULLARD R. W., FUNKHOUSER G. E. Estimated regional blood flow by rubidium 86 distribution during arousal from hibernation. Am J Physiol. 1962 Aug;203:266–270. doi: 10.1152/ajplegacy.1962.203.2.266. [DOI] [PubMed] [Google Scholar]
  2. Benhamou Y., Dohin E., Lunel-Fabiani F., Poynard T., Huraux J. M., Katlama C., Opolon P., Gentilini M. Efficacy of lamivudine on replication of hepatitis B virus in HIV-infected patients. Lancet. 1995 Feb 11;345(8946):396–397. doi: 10.1016/s0140-6736(95)90388-7. [DOI] [PubMed] [Google Scholar]
  3. Blaney S. M., Daniel M. J., Harker A. J., Godwin K., Balis F. M. Pharmacokinetics of lamivudine and BCH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob Agents Chemother. 1995 Dec;39(12):2779–2782. doi: 10.1128/aac.39.12.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982 Apr;10(2):201–227. doi: 10.1007/BF01062336. [DOI] [PubMed] [Google Scholar]
  5. Cammack N., Rouse P., Marr C. L., Reid P. J., Boehme R. E., Coates J. A., Penn C. R., Cameron J. M. Cellular metabolism of (-) enantiomeric 2'-deoxy-3'-thiacytidine. Biochem Pharmacol. 1992 May 28;43(10):2059–2064. doi: 10.1016/0006-2952(92)90162-c. [DOI] [PubMed] [Google Scholar]
  6. Chang C. N., Doong S. L., Zhou J. H., Beach J. W., Jeong L. S., Chu C. K., Tsai C. H., Cheng Y. C., Liotta D., Schinazi R. Deoxycytidine deaminase-resistant stereoisomer is the active form of (+/-)-2',3'-dideoxy-3'-thiacytidine in the inhibition of hepatitis B virus replication. J Biol Chem. 1992 Jul 15;267(20):13938–13942. [PubMed] [Google Scholar]
  7. Chen H. S., Kaneko S., Girones R., Anderson R. W., Hornbuckle W. E., Tennant B. C., Cote P. J., Gerin J. L., Purcell R. H., Miller R. H. The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J Virol. 1993 Mar;67(3):1218–1226. doi: 10.1128/jvi.67.3.1218-1226.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coates J. A., Cammack N., Jenkinson H. J., Jowett A. J., Jowett M. I., Pearson B. A., Penn C. R., Rouse P. L., Viner K. C., Cameron J. M. (-)-2'-deoxy-3'-thiacytidine is a potent, highly selective inhibitor of human immunodeficiency virus type 1 and type 2 replication in vitro. Antimicrob Agents Chemother. 1992 Apr;36(4):733–739. doi: 10.1128/aac.36.4.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fourel I., Hantz O., Watanabe K. A., Jacquet C., Chomel B., Fox J. J., Trepo C. Inhibitory effects of 2'-fluorinated arabinosyl-pyrimidine nucleosides on woodchuck hepatitis virus replication in chronically infected woodchucks. Antimicrob Agents Chemother. 1990 Mar;34(3):473–475. doi: 10.1128/aac.34.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galibert F., Chen T. N., Mandart E. Localization and nucleotide sequence of the gene coding for the woodchuck hepatitis virus surface antigen: comparison with the gene coding for the human hepatitis B virus surface antigen. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5315–5319. doi: 10.1073/pnas.78.9.5315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HONG S. K. Renal function during hypothermia and hibernation. Am J Physiol. 1957 Jan;188(1):137–150. doi: 10.1152/ajplegacy.1956.188.1.137. [DOI] [PubMed] [Google Scholar]
  12. Hantz O., Ooka T., Vitvitski L., Pichoud C., Trepo C. Comparison of properties of woodchuck hepatitis virus and human hepatitis B virus endogenous DNA polymerases. Antimicrob Agents Chemother. 1984 Feb;25(2):242–246. doi: 10.1128/aac.25.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hussey E. K., Donn K. H., Daniel M. J., Hall S. T., Harker A. J., Evans G. L. Interspecies scaling and pharmacokinetic parameters of 3TC in humans. J Clin Pharmacol. 1994 Oct;34(10):975–977. doi: 10.1002/j.1552-4604.1994.tb01968.x. [DOI] [PubMed] [Google Scholar]
  14. Ibrahim S. S., Boudinot F. D. Pharmacokinetics of 2',3'-dideoxycytidine in rats: application to interspecies scale-up. J Pharm Pharmacol. 1989 Dec;41(12):829–834. doi: 10.1111/j.2042-7158.1989.tb06381.x. [DOI] [PubMed] [Google Scholar]
  15. Ikeda N., Kaneko S., Shimoda A., Inagaki Y., Unoura M., Okada M., Yonekawa Y., Takahashi K., Kobayashi K. Efficiency of oxetanocin-G, a novel nucleoside against the woodchuck hepatitis virus. J Antimicrob Chemother. 1994 Jan;33(1):83–89. doi: 10.1093/jac/33.1.83. [DOI] [PubMed] [Google Scholar]
  16. Millman I., Halbherr T., Simmons H. Immunological cross-reactivities of woodchuck and hepatitis B viral antigens. Infect Immun. 1982 Feb;35(2):752–757. doi: 10.1128/iai.35.2.752-757.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patel B. A., Boudinot F. D., Schinazi R. F., Gallo J. M., Chu C. K. Comparative pharmacokinetics and interspecies scaling of 3'-azido-3'-deoxythymidine (AZT) in several mammalian species. J Pharmacobiodyn. 1990 Mar;13(3):206–211. doi: 10.1248/bpb1978.13.206. [DOI] [PubMed] [Google Scholar]
  18. Riggs D. S., Guarnieri J. A., Addelman S. Fitting straight lines when both variables are subject to error. Life Sci. 1978 Apr 3;22(13-15):1305–1360. doi: 10.1016/0024-3205(78)90098-x. [DOI] [PubMed] [Google Scholar]
  19. Rocci M. L., Jr, Jusko W. J. LAGRAN program for area and moments in pharmacokinetic analysis. Comput Programs Biomed. 1983 Jun;16(3):203–216. doi: 10.1016/0010-468x(83)90082-x. [DOI] [PubMed] [Google Scholar]
  20. Schinazi R. F., Lloyd R. M., Jr, Nguyen M. H., Cannon D. L., McMillan A., Ilksoy N., Chu C. K., Liotta D. C., Bazmi H. Z., Mellors J. W. Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob Agents Chemother. 1993 Apr;37(4):875–881. doi: 10.1128/aac.37.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Snyder R. L., Ratcliffe H. L. Marmota monax: a model for studies of cardiovascular, cerebrovascular and neoplastic disease. Acta Zool Pathol Antverp. 1969 May;48:265–273. [PubMed] [Google Scholar]
  22. Summers J., Smolec J. M., Snyder R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4533–4537. doi: 10.1073/pnas.75.9.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Werner B. G., Smolec J. M., Snyder R., Summers J. Serological relationship of woodchuck hepatitis virus to human hepatitis B virus. J Virol. 1979 Oct;32(1):314–322. doi: 10.1128/jvi.32.1.314-322.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van Leeuwen R., Katlama C., Kitchen V., Boucher C. A., Tubiana R., McBride M., Ingrand D., Weber J., Hill A., McDade H. Evaluation of safety and efficacy of 3TC (lamivudine) in patients with asymptomatic or mildly symptomatic human immunodeficiency virus infection: a phase I/II study. J Infect Dis. 1995 May;171(5):1166–1171. doi: 10.1093/infdis/171.5.1166. [DOI] [PubMed] [Google Scholar]
  25. van Leeuwen R., Lange J. M., Hussey E. K., Donn K. H., Hall S. T., Harker A. J., Jonker P., Danner S. A. The safety and pharmacokinetics of a reverse transcriptase inhibitor, 3TC, in patients with HIV infection: a phase I study. AIDS. 1992 Dec;6(12):1471–1475. doi: 10.1097/00002030-199212000-00008. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES