Abstract
The transepithelial passage of the orally bioavailable antibacterial agent oxazolidin-2-one (OXa) and 10 derivatives has been studied with human intestinal (Caco-2) and canine renal (MDCK) cell lines grown on polycarbonate filters. The transepithelial passage was assayed in the apical-to-basolateral (AP-to-BL) direction and in the opposite direction (BL to AP) in both cell lines. The observed passage rates of OXa were similar in both directions in the two cell lines, suggesting passive diffusion. This was further confirmed by the fact that transport kinetics were linear as a function of initial concentration. The rates of AP-to-BL passage of OXa and seven of the derivatives in both cell lines were linearly related to lipophilicity, whether expressed as high-passage liquid chromatography retention time or as the logarithm of the n-octanol-water partition coefficient (log P). These data suggest that the lipophilicity of OXa is important for its observed bioavailability after oral administration. Interestingly, three of the derivatives exhibited a higher passage rate than predicted by lipophilicity. Further studies indicated that this transport was saturable, similar in the two directions, and not affected by energy depletion, suggesting the presence of an additional carrier-mediated facilitated-transport mechanism.
Full Text
The Full Text of this article is available as a PDF (247.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez-Hernandez X., Smith M., Glass J. Regulation of iron uptake and transport by transferrin in Caco-2 cells, an intestinal cell line. Biochim Biophys Acta. 1994 Jun 22;1192(2):215–222. doi: 10.1016/0005-2736(94)90121-x. [DOI] [PubMed] [Google Scholar]
- Artursson P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci. 1990 Jun;79(6):476–482. doi: 10.1002/jps.2600790604. [DOI] [PubMed] [Google Scholar]
- Artursson P., Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991 Mar 29;175(3):880–885. doi: 10.1016/0006-291x(91)91647-u. [DOI] [PubMed] [Google Scholar]
- Artursson P., Magnusson C. Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J Pharm Sci. 1990 Jul;79(7):595–600. doi: 10.1002/jps.2600790710. [DOI] [PubMed] [Google Scholar]
- Baldwin S. A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta. 1993 Jun 8;1154(1):17–49. doi: 10.1016/0304-4157(93)90015-g. [DOI] [PubMed] [Google Scholar]
- Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
- Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
- Chikhale E. G., Ng K. Y., Burton P. S., Borchardt R. T. Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides. Pharm Res. 1994 Mar;11(3):412–419. doi: 10.1023/a:1018969222130. [DOI] [PubMed] [Google Scholar]
- Conradi R. A., Hilgers A. R., Ho N. F., Burton P. S. The influence of peptide structure on transport across Caco-2 cells. II. Peptide bond modification which results in improved permeability. Pharm Res. 1992 Mar;9(3):435–439. doi: 10.1023/a:1015867608405. [DOI] [PubMed] [Google Scholar]
- Conradi R. A., Hilgers A. R., Ho N. F., Burton P. S. The influence of peptide structure on transport across Caco-2 cells. Pharm Res. 1991 Dec;8(12):1453–1460. doi: 10.1023/a:1015825912542. [DOI] [PubMed] [Google Scholar]
- Dix C. J., Hassan I. F., Obray H. Y., Shah R., Wilson G. The transport of vitamin B12 through polarized monolayers of Caco-2 cells. Gastroenterology. 1990 May;98(5 Pt 1):1272–1279. doi: 10.1016/0016-5085(90)90344-z. [DOI] [PubMed] [Google Scholar]
- Ferruzza S., Ranaldi G., Di Girolamo M., Sambuy Y. The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na(+)-dependent and Na(+)-independent mechanisms on different plasma membrane domains. J Nutr. 1995 Oct;125(10):2577–2585. doi: 10.1093/jn/125.10.2577. [DOI] [PubMed] [Google Scholar]
- Fleet J. C., Turnbull A. J., Bourcier M., Wood R. J. Vitamin D-sensitive and quinacrine-sensitive zinc transport in human intestinal cell line Caco-2. Am J Physiol. 1993 Jun;264(6 Pt 1):G1037–G1045. doi: 10.1152/ajpgi.1993.264.6.G1037. [DOI] [PubMed] [Google Scholar]
- Giuliano A. R., Wood R. J. Vitamin D-regulated calcium transport in Caco-2 cells: unique in vitro model. Am J Physiol. 1991 Feb;260(2 Pt 1):G207–G212. doi: 10.1152/ajpgi.1991.260.2.G207. [DOI] [PubMed] [Google Scholar]
- Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hidalgo I. J., Borchardt R. T. Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2. Biochim Biophys Acta. 1990 Sep 21;1028(1):25–30. doi: 10.1016/0005-2736(90)90261-l. [DOI] [PubMed] [Google Scholar]
- Hilgers A. R., Conradi R. A., Burton P. S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 1990 Sep;7(9):902–910. doi: 10.1023/a:1015937605100. [DOI] [PubMed] [Google Scholar]
- Hu M., Borchardt R. T. Mechanism of L-alpha-methyldopa transport through a monolayer of polarized human intestinal epithelial cells (Caco-2). Pharm Res. 1990 Dec;7(12):1313–1319. doi: 10.1023/a:1015906409585. [DOI] [PubMed] [Google Scholar]
- Inui K., Okano T., Maegawa H., Kato M., Takano M., Hori R. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine. J Pharmacol Exp Ther. 1988 Oct;247(1):235–241. [PubMed] [Google Scholar]
- Inui K., Yamamoto M., Saito H. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1992 Apr;261(1):195–201. [PubMed] [Google Scholar]
- Kilberg M. S., Stevens B. R., Novak D. A. Recent advances in mammalian amino acid transport. Annu Rev Nutr. 1993;13:137–165. doi: 10.1146/annurev.nu.13.070193.001033. [DOI] [PubMed] [Google Scholar]
- Kim D. C., Burton P. S., Borchardt R. T. A correlation between the permeability characteristics of a series of peptides using an in vitro cell culture model (Caco-2) and those using an in situ perfused rat ileum model of the intestinal mucosa. Pharm Res. 1993 Dec;10(12):1710–1714. doi: 10.1023/a:1018961828510. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ma T. Y., Dyer D. L., Said H. M. Human intestinal cell line Caco-2: a useful model for studying cellular and molecular regulation of biotin uptake. Biochim Biophys Acta. 1994 Jan 3;1189(1):81–88. doi: 10.1016/0005-2736(94)90283-6. [DOI] [PubMed] [Google Scholar]
- Mahraoui L., Rodolosse A., Barbat A., Dussaulx E., Zweibaum A., Rousset M., Brot-Laroche E. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J. 1994 Mar 15;298(Pt 3):629–633. doi: 10.1042/bj2980629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahraoui L., Rousset M., Dussaulx E., Darmoul D., Zweibaum A., Brot-Laroche E. Expression and localization of GLUT-5 in Caco-2 cells, human small intestine, and colon. Am J Physiol. 1992 Sep;263(3 Pt 1):G312–G318. doi: 10.1152/ajpgi.1992.263.3.G312. [DOI] [PubMed] [Google Scholar]
- Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
- Ng K. Y., Borchardt R. T. Biotin transport in a human intestinal epithelial cell line (Caco-2). Life Sci. 1993;53(14):1121–1127. doi: 10.1016/0024-3205(93)90548-h. [DOI] [PubMed] [Google Scholar]
- Pikal M. J., Shah S. Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm Res. 1990 Mar;7(3):222–229. doi: 10.1023/a:1015809725688. [DOI] [PubMed] [Google Scholar]
- Ramanujam K. S., Seetharam S., Ramasamy M., Seetharam B. Expression of cobalamin transport proteins and cobalamin transcytosis by colon adenocarcinoma cells. Am J Physiol. 1991 Mar;260(3 Pt 1):G416–G422. doi: 10.1152/ajpgi.1991.260.3.G416. [DOI] [PubMed] [Google Scholar]
- Ranaldi G., Islam K., Sambuy Y. D-cycloserine uses an active transport mechanism in the human intestinal cell line Caco 2. Antimicrob Agents Chemother. 1994 Jun;38(6):1239–1245. doi: 10.1128/aac.38.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranaldi G., Islam K., Sambuy Y. Epithelial cells in culture as a model for the intestinal transport of antimicrobial agents. Antimicrob Agents Chemother. 1992 Jul;36(7):1374–1381. doi: 10.1128/aac.36.7.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riley S. A., Warhurst G., Crowe P. T., Turnberg L. A. Active hexose transport across cultured human Caco-2 cells: characterisation and influence of culture conditions. Biochim Biophys Acta. 1991 Jul 22;1066(2):175–182. doi: 10.1016/0005-2736(91)90184-a. [DOI] [PubMed] [Google Scholar]
- Sepúlveda F. V., Pearson J. D. Cationic amino acid transport by two renal epithelial cell lines: LLC-PK1 and MDCK cells. J Cell Physiol. 1985 Apr;123(1):144–150. doi: 10.1002/jcp.1041230121. [DOI] [PubMed] [Google Scholar]
- Slee A. M., Wuonola M. A., McRipley R. J., Zajac I., Zawada M. J., Bartholomew P. T., Gregory W. A., Forbes M. Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob Agents Chemother. 1987 Nov;31(11):1791–1797. doi: 10.1128/aac.31.11.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorens B. Facilitated glucose transporters in epithelial cells. Annu Rev Physiol. 1993;55:591–608. doi: 10.1146/annurev.ph.55.030193.003111. [DOI] [PubMed] [Google Scholar]
- Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. J Biol Chem. 1993 Apr 15;268(11):7640–7642. [PubMed] [Google Scholar]
- Thwaites D. T., McEwan G. T., Brown C. D., Hirst B. H., Simmons N. L. Na(+)-independent, H(+)-coupled transepithelial beta-alanine absorption by human intestinal Caco-2 cell monolayers. J Biol Chem. 1993 Sep 5;268(25):18438–18441. [PubMed] [Google Scholar]
- Thwaites D. T., McEwan G. T., Cook M. J., Hirst B. H., Simmons N. L. H(+)-coupled (Na(+)-independent) proline transport in human intestinal (Caco-2) epithelial cell monolayers. FEBS Lett. 1993 Oct 25;333(1-2):78–82. doi: 10.1016/0014-5793(93)80378-8. [DOI] [PubMed] [Google Scholar]
- Wils P., Warnery A., Phung-Ba V., Legrain S., Scherman D. High lipophilicity decreases drug transport across intestinal epithelial cells. J Pharmacol Exp Ther. 1994 May;269(2):654–658. [PubMed] [Google Scholar]
- Wilson G. Cell culture techniques for the study of drug transport. Eur J Drug Metab Pharmacokinet. 1990 Apr-Jun;15(2):159–163. doi: 10.1007/BF03190199. [DOI] [PubMed] [Google Scholar]