Abstract
Despite controversies associated with forms and value of antibiotic therapy for cystic fibrosis patients, antibiotherapy remains a cornerstone in the management of those patients. Locally administered liposome-encapsulated antibiotics may offer advantages over free antibiotics, including sustained concentration of the antibiotic, minimal systemic absorption, reduced toxicity, and increased efficacy. We evaluated the efficacy of free and encapsulated tobramycin in fluid and rigid liposomal formulations administered to rats chronically infected with Pseudomonas aeruginosa. Chronic infection in lungs was established by intratracheal administration of 10(5) CFU of a mucoid variant of P. aeruginosa PA 508 prepared in agar beads. Antibiotic treatments were given intratracheally at time intervals of 16 h. After the last treatment, lung bacterial counts were determined and tobramycin levels in the lungs and kidneys were evaluated by high-performance liquid chromatographic analysis and microbiological assay. Two independent experiments showed that animals treated with encapsulated tobramycin in fluid liposomes had a number of CFU less than the minimal CFU number required to be statistically acceptable compared with > or = 10(6) CFU per pair of lungs for animals treated with encapsulated tobramycin in rigid liposomes, free antibiotic, or liposomes without tobramycin. Tobramycin measured in the lungs at 16 h after the last treatment following the administration of encapsulated antibiotic was still active, and its concentration was > or = 27 micrograms/mg of tissue. Low levels of tobramycin were detected in the kidneys (0.59 to 0.87 micrograms/mg of tissue) after the administration of encapsulated antibiotic, while 5.31 micrograms/mg of tissue was detected in the kidneys following the administration of free antibiotic. These results suggest that the local administration of fluid liposomes with encapsulated tobramycin could greatly improve the management of chronic pulmonary infection in cystic fibrosis patients.
Full Text
The Full Text of this article is available as a PDF (241.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anwar H., van Biesen T., Dasgupta M., Lam K., Costerton J. W. Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother. 1989 Oct;33(10):1824–1826. doi: 10.1128/aac.33.10.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assil K. K., Frucht-Perry J., Ziegler E., Schanzlin D. J., Schneiderman T., Weinreb R. N. Tobramycin liposomes. Single subconjunctival therapy of pseudomonal keratitis. Invest Ophthalmol Vis Sci. 1991 Dec;32(13):3216–3220. [PubMed] [Google Scholar]
- Barends D. M., Zwaan C. L., Hulshoff A. Improved microdetermination of gentamicin and sisomicin in serum by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 1981 Feb 13;222(2):316–323. doi: 10.1016/s0378-4347(00)81068-3. [DOI] [PubMed] [Google Scholar]
- Barends D. M., Zwaan C. L., Hulshoff A. Micro-determination of tobramycin in serum by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 1981 Oct 9;225(2):417–426. doi: 10.1016/s0378-4347(00)80289-3. [DOI] [PubMed] [Google Scholar]
- Barends D. M., van der Sandt J. S., Hulshoff A. Micro determination of gentamicin in serum by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 1980 May 9;182(2):201–210. doi: 10.1016/s0378-4347(00)81624-2. [DOI] [PubMed] [Google Scholar]
- Bayer A. S., Peters J., Parr T. R., Jr, Chan L., Hancock R. E. Role of beta-lactamase in in vivo development of ceftazidime resistance in experimental Pseudomonas aeruginosa endocarditis. Antimicrob Agents Chemother. 1987 Feb;31(2):253–258. doi: 10.1128/aac.31.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant R. E., Hammond D. Interaction of purulent material with antibiotics used to treat Pseudomonas infections. Antimicrob Agents Chemother. 1974 Dec;6(6):702–707. doi: 10.1128/aac.6.6.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell M. E., Farmer S. W., Speert D. P. New selective medium for Pseudomonas aeruginosa with phenanthroline and 9-chloro-9-[4-(diethylamino)phenyl]-9,10-dihydro-10- phenylacridine hydrochloride (C-390). J Clin Microbiol. 1988 Sep;26(9):1910–1912. doi: 10.1128/jcm.26.9.1910-1912.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costerton J. W., Lam J., Lam K., Chan R. The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S867–S873. doi: 10.1093/clinids/5.supplement_5.s867. [DOI] [PubMed] [Google Scholar]
- Crommelin D. J. Influence of lipid composition and ionic strength on the physical stability of liposomes. J Pharm Sci. 1984 Nov;73(11):1559–1563. doi: 10.1002/jps.2600731118. [DOI] [PubMed] [Google Scholar]
- Dahlberg A. E., Horodyski F., Keller P. Interaction of neomycin with ribosomes and ribosomal ribonucleic acid. Antimicrob Agents Chemother. 1978 Feb;13(2):331–339. doi: 10.1128/aac.13.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fee W. E., Jr, Vierra V., Lathrop G. R. Clinical evaluation of aminoglycoside toxicity: tobramycin versus gentamicin, a preliminary report. J Antimicrob Chemother. 1978 May;4 (Suppl A):31–36. doi: 10.1093/jac/4.suppl_a.31. [DOI] [PubMed] [Google Scholar]
- Fountain M. W., Weiss S. J., Fountain A. G., Shen A., Lenk R. P. Treatment of Brucella canis and Brucella abortus in vitro and in vivo by stable plurilamellar vesicle-encapsulated aminoglycosides. J Infect Dis. 1985 Sep;152(3):529–535. doi: 10.1093/infdis/152.3.529. [DOI] [PubMed] [Google Scholar]
- Frère J. M. Quantitative relationship between sensitivity to beta-lactam antibiotics and beta-lactamase production in gram-negative bacteria--I. Steady-state treatment. Biochem Pharmacol. 1989 May 1;38(9):1415–1426. doi: 10.1016/0006-2952(89)90180-9. [DOI] [PubMed] [Google Scholar]
- Govan J. R., Nelson J. W. Microbiology of cystic fibrosis lung infections: themes and issues. J R Soc Med. 1993;86 (Suppl 20):11–18. [PMC free article] [PubMed] [Google Scholar]
- Grit M., Crommelin D. J. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids. 1993 Sep;64(1-3):3–18. doi: 10.1016/0009-3084(93)90053-6. [DOI] [PubMed] [Google Scholar]
- Hodson M. E. Antibiotic treatment. Aerosol therapy. Chest. 1988 Aug;94(2 Suppl):156S–162S. [PubMed] [Google Scholar]
- Hoiby N., Flensborg E. W., Beck B., Friis B., Jacobsen S. V., Jacobsen L. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand J Respir Dis. 1977 Apr;58(2):65–79. [PubMed] [Google Scholar]
- Lagacé J., Dubreuil M., Montplaisir S. Liposome-encapsulated antibiotics: preparation, drug release and antimicrobial activity against Pseudomonas aeruginosa. J Microencapsul. 1991 Jan-Mar;8(1):53–61. doi: 10.3109/02652049109021857. [DOI] [PubMed] [Google Scholar]
- Lam J., Chan R., Lam K., Costerton J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 1980 May;28(2):546–556. doi: 10.1128/iai.28.2.546-556.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy J., Smith A. L., Kenny M. A., Ramsey B., Schoenknecht F. D. Bioactivity of gentamicin in purulent sputum from patients with cystic fibrosis or bronchiectasis: comparison with activity in serum. J Infect Dis. 1983 Dec;148(6):1069–1076. doi: 10.1093/infdis/148.6.1069. [DOI] [PubMed] [Google Scholar]
- May T. B., Shinabarger D., Maharaj R., Kato J., Chu L., DeVault J. D., Roychoudhury S., Zielinski N. A., Berry A., Rothmel R. K. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev. 1991 Apr;4(2):191–206. doi: 10.1128/cmr.4.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelman P. M., Smith A. L., Levy J., Weber A., Ramsey B., Davis R. L. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am Rev Respir Dis. 1985 Oct;132(4):761–765. doi: 10.1164/arrd.1985.132.4.761. [DOI] [PubMed] [Google Scholar]
- Nicas T. I., Iglewski B. H. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol. 1985 Apr;31(4):387–392. doi: 10.1139/m85-074. [DOI] [PubMed] [Google Scholar]
- Nickel J. C., Ruseska I., Wright J. B., Costerton J. W. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother. 1985 Apr;27(4):619–624. doi: 10.1128/aac.27.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Normark S. Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: a quantitative predictive treatment. Mol Microbiol. 1987 Jul;1(1):29–36. doi: 10.1111/j.1365-2958.1987.tb00523.x. [DOI] [PubMed] [Google Scholar]
- Omri A., Beaulac C., Bouhajib M., Montplaisir S., Sharkawi M., Lagacé J. Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1994 May;38(5):1090–1095. doi: 10.1128/aac.38.5.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pier G. B. Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: current status of the host-bacterium interaction. J Infect Dis. 1985 Apr;151(4):575–580. doi: 10.1093/infdis/151.4.575. [DOI] [PubMed] [Google Scholar]
- Potter J. L., Matthews L. W., Spector S., Lemm J. Complex formation between basic antibiotics and deoxyribonucleic acid in human pulmonary secretions. Pediatrics. 1965 Nov;36(5):714–720. [PubMed] [Google Scholar]
- Price C. I., Horton J. W., Baxter C. R. Liposome encapsulation: a method for enhancing the effectiveness of local antibiotics. Surgery. 1994 Apr;115(4):480–487. [PubMed] [Google Scholar]
- Schentag J. J., Cumbo T. J., Jusko W. J., Plaut M. E. Gentamicin tissue accumulation and nephrotoxic reactions. JAMA. 1978 Nov 3;240(19):2067–2069. [PubMed] [Google Scholar]
- Smith C. R., Maxwell R. R., Edwards C. Q., Rogers J. F., Lietman P. S. Nephrotoxicity induced by gentamicin and amikacin. Johns Hopkins Med J. 1978 Mar;142(3):85–90. [PubMed] [Google Scholar]
- Vasil M. L. Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology. J Pediatr. 1986 May;108(5 Pt 2):800–805. doi: 10.1016/s0022-3476(86)80748-x. [DOI] [PubMed] [Google Scholar]
- Yoneyama H., Akatsuka A., Nakae T. The outer membrane of Pseudomonas aeruginosa is a barrier against the penetration of disaccharides. Biochem Biophys Res Commun. 1986 Jan 14;134(1):106–112. doi: 10.1016/0006-291x(86)90533-4. [DOI] [PubMed] [Google Scholar]