Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Mar;40(3):670–676. doi: 10.1128/aac.40.3.670

Effects of fasting on temporal variations in nephrotoxicity of gentamicin in rats.

D Beauchamp 1, P Collin 1, L Grenier 1, M LeBrun 1, M Couture 1, L Thibault 1, G Labrecque 1, M G Bergeron 1
PMCID: PMC163178  PMID: 8851591

Abstract

Evidence for temporal variations in the nephrotoxicity of low doses of aminoglycosides were recently shown by using specific and sensitive parameters of renal toxicity. The aim of the present study was to evaluate the effect of a short period of fasting on the temporal variations in the renal toxicity of gentamicin. Twenty-eight normally fed (i.e., food and water were available ad libitum throughout the experiment) female Sprague-Dawley rats (weight, 175 to 220 g) and 28 fasted rats (i.e., only water was available during a 12-h fast before and a 24-h fast after gentamicin injection) were used. The animals were synchronized on a 14-h light, 10-h dark cycle (lights on at 0600 h) for 1 week before gentamicin administration. In July 1993, each group of animals was treated with a single intraperitoneal injection of saline (NaCl, 0.9%) or gentamicin (150 mg/kg of body weight) at either the peak (1400 h) or the trough (0200 h) of the previously determined toxicity. On day 1, the 24-h urinary excretion of beta-galactosidase, N-acetyl-beta-D-glucosaminidase, and gamma-glutamyltransferase was significantly higher in normally fed animals treated with gentamicin at 1400 h than in their time-matched controls and in normally fed animals treated at 0200 h (P < 0.01), which had normal levels of these enzymes. By contrast, the urinary excretion of these enzymes was significantly higher in both groups of gentamicin-treated, fasted rats than in their time-matched control groups (P < 0.01), reaching levels similar to those measured in normally fed rats treated at 1400 h. The accumulation of gentamicin was significantly lower in the renal cortex of normally fed rats treated at 0200 h than in rats treated at 1400 h (P < 0.05), but this time-dependent difference was not found in fasted rats treated at 0200 and 1400 h. Immunogold labeling done on ultrathin sections and observed by electron microscopy showed a similar subcellular localization of gentamicin in normally fed and fasted rats treated at either 1400 or 0200 h. These results suggest that the feeding period is of crucial importance in the temporal variations of the nephrotoxicity of gentamicin in rats.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. M., Bates S. B. Dietary protein as a risk factor in gentamicin nephrotoxicity. Ren Fail. 1987;10(3-4):153–159. doi: 10.3109/08860228709047650. [DOI] [PubMed] [Google Scholar]
  2. Bates R. D., Nahata M. C. Once-daily administration of aminoglycosides. Ann Pharmacother. 1994 Jun;28(6):757–766. doi: 10.1177/106002809402800614. [DOI] [PubMed] [Google Scholar]
  3. Beauchamp D., Gourde P., Bergeron M. G. Subcellular distribution of gentamicin in proximal tubular cells, determined by immunogold labeling. Antimicrob Agents Chemother. 1991 Nov;35(11):2173–2179. doi: 10.1128/aac.35.11.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beauchamp D., Gourde P., Simard M., Bergeron M. G. Subcellular distribution of daptomycin given alone or with tobramycin in renal proximal tubular cells. Antimicrob Agents Chemother. 1994 Feb;38(2):189–194. doi: 10.1128/aac.38.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beauchamp D., Gourde P., Simard M., Bergeron M. G. Subcellular localization of tobramycin and vancomycin given alone and in combination in proximal tubular cells, determined by immunogold labeling. Antimicrob Agents Chemother. 1992 Oct;36(10):2204–2210. doi: 10.1128/aac.36.10.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bertino J. S., Jr, Booker L. A., Franck P. A., Jenkins P. L., Franck K. R., Nafziger A. N. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis. 1993 Jan;167(1):173–179. doi: 10.1093/infdis/167.1.173. [DOI] [PubMed] [Google Scholar]
  7. Bosch J. P., Saccaggi A., Lauer A., Ronco C., Belledonne M., Glabman S. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med. 1983 Dec;75(6):943–950. doi: 10.1016/0002-9343(83)90873-2. [DOI] [PubMed] [Google Scholar]
  8. Cambar J., Dorian C., Cal J. C. Chronobiologie et physiopathologie rénale. Pathol Biol (Paris) 1987 Jun;35(6):977–984. [PubMed] [Google Scholar]
  9. Dickson C. J., Schwartzman M. S., Bertino J. S., Jr Factors affecting aminoglycoside disposition: effects of circadian rhythm and dietary protein intake on gentamicin pharmacokinetics. Clin Pharmacol Ther. 1986 Mar;39(3):325–328. doi: 10.1038/clpt.1986.47. [DOI] [PubMed] [Google Scholar]
  10. Dorian C., Catroux P., Cambar J. Etude de la chrononéphrotoxicité de l'amikacine après intoxication chronique de sept jours chez le rat. Pathol Biol (Paris) 1987 Jun;35(5 Pt 2):735–738. [PubMed] [Google Scholar]
  11. Etzel J. V., Nafziger A. N., Bertino J. S., Jr Variation in the pharmacokinetics of gentamicin and tobramycin in patients with pleural effusions and hypoalbuminemia. Antimicrob Agents Chemother. 1992 Mar;36(3):679–681. doi: 10.1128/aac.36.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fauconneau B., De Lemos E., Pariat C., Bouquet S., Courtois P., Piriou A. Chrononephrotoxicity in rat of a vancomycin and gentamicin combination. Pharmacol Toxicol. 1992 Jul;71(1):31–36. doi: 10.1111/j.1600-0773.1992.tb00516.x. [DOI] [PubMed] [Google Scholar]
  13. Fujimura A., Sudoh T., Ebihara A. Time-dependent change in the toxic effects of amikacin on renal functions. Life Sci. 1994;55(5):367–372. doi: 10.1016/0024-3205(94)00647-4. [DOI] [PubMed] [Google Scholar]
  14. Gilbert D. N. Once-daily aminoglycoside therapy. Antimicrob Agents Chemother. 1991 Mar;35(3):399–405. doi: 10.1128/aac.35.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grauer G. F., Greco D. S., Behrend E. N., Fettman M. J., Jaenke R. S., Allen T. A. Effects of dietary protein conditioning on gentamicin-induced nephrotoxicosis in healthy male dogs. Am J Vet Res. 1994 Jan;55(1):90–97. [PubMed] [Google Scholar]
  16. Hosokawa H., Nyu S., Nakamura K., Mifune K., Nakano S. Circadian variation in amikacin clearance and its effects on efficacy and toxicity in mice with and without immunosuppression. Chronobiol Int. 1993 Aug;10(4):259–270. doi: 10.1080/07420529309059708. [DOI] [PubMed] [Google Scholar]
  17. Laurent G., Maldague P., Carlier M. B., Tulkens P. M. Increased renal DNA synthesis in vivo after administration of low doses of gentamicin to rats. Antimicrob Agents Chemother. 1983 Oct;24(4):586–593. doi: 10.1128/aac.24.4.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin L., Grenier L., Bergeron Y., Simard M., Bergeron M. G., Labrecque G., Beauchamp D. Temporal changes of pharmacokinetics, nephrotoxicity, and subcellular distribution of tobramycin in rats. Antimicrob Agents Chemother. 1994 Jan;38(1):54–60. doi: 10.1128/aac.38.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lin L., Grenier L., Thériault G., Gourde P., Yoshiyama Y., Bergeron M. G., Labrecque G., Beauchamp D. Nephrotoxicity of low doses of tobramycin in rats: effect of the time of administration. Life Sci. 1994;55(3):169–177. doi: 10.1016/0024-3205(94)00877-9. [DOI] [PubMed] [Google Scholar]
  20. Lucht F., Tigaud S., Esposito G., Cougnard J., Fargier M. P., Peyramond D., Bertrand J. L. Chronokinetic study of netilmicin in man. Eur J Clin Pharmacol. 1990;39(2):199–201. doi: 10.1007/BF00280062. [DOI] [PubMed] [Google Scholar]
  21. Maruhn D. Rapid colorimetric assay of beta-galactosidase and N-acetyl-beta-glucosaminidase in human urine. Clin Chim Acta. 1976 Dec;73(3):453–461. doi: 10.1016/0009-8981(76)90147-9. [DOI] [PubMed] [Google Scholar]
  22. Pariat C., Courtois P., Cambar J., Piriou A., Bouquet S. Circadian variations in the renal toxicity of gentamicin in rats. Toxicol Lett. 1988 Feb;40(2):175–182. doi: 10.1016/0378-4274(88)90159-2. [DOI] [PubMed] [Google Scholar]
  23. Pattyn V. M., Verpooten G. A., Giuliano R. A., Zheng F., De Broe M. E. Effect of hyperfiltration, proteinuria and diabetes mellitus on the uptake kinetics of gentamicin in the kidney cortex of rats. J Pharmacol Exp Ther. 1988 Feb;244(2):694–698. [PubMed] [Google Scholar]
  24. Persijn J. P., van der Slik W. A new method for the determination of gamma-glutamyltransferase in serum. J Clin Chem Clin Biochem. 1976 Sep;14(9):421–427. doi: 10.1515/cclm.1976.14.1-12.421. [DOI] [PubMed] [Google Scholar]
  25. Pons M., Tranchot J., L'Azou B., Cambar J. Circadian rhythms of renal hemodynamics in unanesthetized, unrestrained rats. Chronobiol Int. 1994 Oct;11(5):301–308. doi: 10.3109/07420529409057246. [DOI] [PubMed] [Google Scholar]
  26. Song J., Ohdo S., Ogawa N., Nakano S. Influence of feeding schedule on chronopharmacological aspects of gentamicin in mice. Chronobiol Int. 1993 Oct;10(5):338–348. doi: 10.3109/07420529309064488. [DOI] [PubMed] [Google Scholar]
  27. Whiting P. H., Power D. A., Petersen J., Innes A., Simpson J. G., Catto G. R. The effect of dietary protein restriction on high dose gentamicin nephrotoxicity in rats. Br J Exp Pathol. 1988 Feb;69(1):35–41. [PMC free article] [PubMed] [Google Scholar]
  28. Yoshiyama Y., Kobayashi T., Tomonaga F., Nakano S. Chronotoxical study of gentamicin induced nephrotoxicity in rats. J Antibiot (Tokyo) 1992 May;45(5):806–808. doi: 10.7164/antibiotics.45.806. [DOI] [PubMed] [Google Scholar]
  29. Yoshiyama Y., Nishikawa S., Sugiyama T., Kobayashi T., Shimada H., Tomonaga F., Ohdo S., Ogawa N., Nakano S. Influence of circadian-stage-dependent dosing schedule on nephrotoxicity and pharmacokinetics of isepamicin in rats. Antimicrob Agents Chemother. 1993 Sep;37(9):2042–2043. doi: 10.1128/aac.37.9.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zarowitz B. J., Pilla A. M., Popovich J., Jr Expanded gentamicin volume of distribution in patients with indicators of malnutrition. Clin Pharm. 1990 Jan;9(1):40–44. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES