Abstract
We compared the pharmacodynamic activities of levofloxacin versus vancomycin, with or without rifampin, in an in vitro model with infected platelet-fibrin clots simulating vegetations. Infected platelet-fibrin clots were prepared with human cryoprecipitate, human platelets, calcium, thrombin, and approximately 10(9) CFU of organisms (MSSA 1199 and MRSA 494) per g and then were suspended via monofilament line into the in vitro model containing Mueller-Hinton growth medium. Antibiotics were administered by bolus injection into the model to simulate human pharmacokinetics; the regimens simulated included levofloxacin at dosages of 800 mg every 24 h (q24h) and 400 mg q12h, vancomycin at 1 g q12h, and rifampin at 600 mg q24h. Each model was run in duplicate over a 72-h period. Infected platelet-fibrin clots were removed in duplicate from each model, weighed, homogenized, serially diluted with sterile 0.9% saline, and plated on tryptic soy agar plates and plates containing antibiotics at 3, 6, and 12 times the MIC to evaluate the emergence of resistance. Time-kill curves were constructed by plotting the inoculum size versus time. Residual inoculum at 72 h was used to compare regimens. All levofloxacin regimens were significantly better than vancomycin monotherapy against both isolates (P < 0.002). Against MSSA 1199, levofloxacin q24h was significantly better than all other regimens, including levofloxacin q12h (P < 0.002); however, no difference between the levofloxacin monotherapy and combination therapy (with rifampin) regimens against MRSA 494 was seen. Killing activity for levofloxacin appeared to correlate better with the peak/MIC ratio than with the area under the curve/MIC ratio. The addition of rifampin significantly enhanced the activity of vancomycin but had little effect upon the activity of levofloxacin. For MRSA 494, vancomycin plus rifampin resulted in the greatest killing (P < 0.05). Development of resistance was not detected with any regimen. Levofloxacin may be a useful therapeutic alternative in the treatment of staphylococcal endocarditis, and further study with animal models of endocarditis or clinical trials are warranted.
Full Text
The Full Text of this article is available as a PDF (198.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blaser J. In-vitro model for simultaneous simulation of the serum kinetics of two drugs with different half-lives. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):125–130. doi: 10.1093/jac/15.suppl_a.125. [DOI] [PubMed] [Google Scholar]
- Chambers H. F., Miller R. T., Newman M. D. Right-sided Staphylococcus aureus endocarditis in intravenous drug abusers: two-week combination therapy. Ann Intern Med. 1988 Oct 15;109(8):619–624. doi: 10.7326/0003-4819-109-8-619. [DOI] [PubMed] [Google Scholar]
- Cremieux A. C., Carbon C. Pharmacokinetic and pharmacodynamic requirements for antibiotic therapy of experimental endocarditis. Antimicrob Agents Chemother. 1992 Oct;36(10):2069–2074. doi: 10.1128/aac.36.10.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cremieux A. C., Maziere B., Vallois J. M., Ottaviani M., Azancot A., Raffoul H., Bouvet A., Pocidalo J. J., Carbon C. Evaluation of antibiotic diffusion into cardiac vegetations by quantitative autoradiography. J Infect Dis. 1989 May;159(5):938–944. doi: 10.1093/infdis/159.5.938. [DOI] [PubMed] [Google Scholar]
- Drusano G. L., Johnson D. E., Rosen M., Standiford H. C. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993 Mar;37(3):483–490. doi: 10.1128/aac.37.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu K. P., Lafredo S. C., Foleno B., Isaacson D. M., Barrett J. F., Tobia A. J., Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):860–866. doi: 10.1128/aac.36.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackbarth C. J., Chambers H. F., Sande M. A. Serum bactericidal activity of rifampin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Apr;29(4):611–613. doi: 10.1128/aac.29.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry N. K., Rouse M. S., Whitesell A. L., McConnell M. E., Wilson W. R. Treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis with ciprofloxacin or vancomycin alone or in combination with rifampin. Am J Med. 1987 Apr 27;82(4A):73–75. [PubMed] [Google Scholar]
- Kaatz G. W., Barriere S. L., Schaberg D. R., Fekety R. The emergence of resistance to ciprofloxacin during treatment of experimental Staphylococcus aureus endocarditis. J Antimicrob Chemother. 1987 Nov;20(5):753–758. doi: 10.1093/jac/20.5.753. [DOI] [PubMed] [Google Scholar]
- Kaatz G. W., Seo S. M., Barriere S. L., Albrecht L. M., Rybak M. J. Ciprofloxacin and rifampin, alone and in combination, for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 1989 Aug;33(8):1184–1187. doi: 10.1128/aac.33.8.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaatz G. W., Seo S. M., Barriere S. L., Albrecht L. M., Rybak M. J. Efficacy of ofloxacin in experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 1990 Feb;34(2):257–260. doi: 10.1128/aac.34.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang S. L., Rybak M. J., McGrath B. J., Kaatz G. W., Seo S. M. Pharmacodynamics of levofloxacin, ofloxacin, and ciprofloxacin, alone and in combination with rifampin, against methicillin-susceptible and -resistant Staphylococcus aureus in an in vitro infection model. Antimicrob Agents Chemother. 1994 Dec;38(12):2702–2709. doi: 10.1128/aac.38.12.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine D. P., Fromm B. S., Reddy B. R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med. 1991 Nov 1;115(9):674–680. doi: 10.7326/0003-4819-115-9-674. [DOI] [PubMed] [Google Scholar]
- Lewin C. S., Smith J. T. Bactericidal mechanisms of ofloxacin. J Antimicrob Chemother. 1988 Sep;22 (Suppl 100):1–8. doi: 10.1093/jac/22.supplement_c.1. [DOI] [PubMed] [Google Scholar]
- McGrath B. J., Kang S. L., Kaatz G. W., Rybak M. J. Bactericidal activities of teicoplanin, vancomycin, and gentamicin alone and in combination against Staphylococcus aureus in an in vitro pharmacodynamic model of endocarditis. Antimicrob Agents Chemother. 1994 Sep;38(9):2034–2040. doi: 10.1128/aac.38.9.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rocci M. L., Jr, Jusko W. J. LAGRAN program for area and moments in pharmacokinetic analysis. Comput Programs Biomed. 1983 Jun;16(3):203–216. doi: 10.1016/0010-468x(83)90082-x. [DOI] [PubMed] [Google Scholar]
- Rybak M. J., Albrecht L. M., Berman J. R., Warbasse L. H., Svensson C. K. Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrob Agents Chemother. 1990 May;34(5):792–795. doi: 10.1128/aac.34.5.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siedentop K. H., Harris D. M., Ham K., Sanchez B. Extended experimental and preliminary surgical findings with autologous fibrin tissue adhesive made from patients own blood. Laryngoscope. 1986 Oct;96(10):1062–1064. doi: 10.1288/00005537-198610000-00003. [DOI] [PubMed] [Google Scholar]
- Small P. M., Chambers H. F. Vancomycin for Staphylococcus aureus endocarditis in intravenous drug users. Antimicrob Agents Chemother. 1990 Jun;34(6):1227–1231. doi: 10.1128/aac.34.6.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson D. F., Letassy N. A., Thompson G. D. Fibrin glue: a review of its preparation, efficacy, and adverse effects as a topical hemostat. Drug Intell Clin Pharm. 1988 Dec;22(12):946–952. doi: 10.1177/106002808802201203. [DOI] [PubMed] [Google Scholar]
- Zinner S. H., Lagast H., Klastersky J. Antistaphylococcal activity of rifampin with other antibiotics. J Infect Dis. 1981 Oct;144(4):365–371. doi: 10.1093/infdis/144.4.365. [DOI] [PubMed] [Google Scholar]