Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Mar;40(3):715–719. doi: 10.1128/aac.40.3.715

Characterization of the chromosomal cephalosporinases produced by Acinetobacter lwoffii and Acinetobacter baumannii clinical isolates.

M Perilli 1, A Felici 1, A Oratore 1, G Cornaglia 1, G Bonfiglio 1, G M Rossolini 1, G Amicosante 1
PMCID: PMC163186  PMID: 8851599

Abstract

The beta-lactamases produced by Acinetobacter lwoffii ULA-501, Acinetobacter baumannii ULA-187, and A. baumannii AC-14 strains were purified and characterized, and their kinetic interactions with several beta-lactam molecules, including substrates and inhibitors, were studied in detail. The three enzymes appeared to be cephalosporinases with different acylation efficiencies (kcat/Km ratio values), and their hydrolytic activities were inhibited by benzylpenicillin, piperacillin, and cefotaxime, which did not behave as substrates. Carbenicillin was a substrate for the beta-lactamase from A. lwoffii ULA-501, whereas it acted as a transient inactivator of the enzymes produced by the two A. baumannii strains. Clavulanic acid was unable to inactivate the three beta-lactamases, whereas sulbactam behaved as an inactivator only at a high concentration (1 mM) which is difficult to achieve during antibiotic therapy. Analysis of the interaction with 6-beta-iodopenicillanic acid also allowed us to better discriminate the three beta-lactamases analyzed in the present study, which can be included in the group 1 functional class (5).

Full Text

The Full Text of this article is available as a PDF (220.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergogne-Berezin E., Joly-Guillou M. L. An underestimated nosocomial pathogen, Acinetobacter calcoaceticus. J Antimicrob Chemother. 1985 Nov;16(5):535–538. doi: 10.1093/jac/16.5.535. [DOI] [PubMed] [Google Scholar]
  2. Blechschmidt B., Borneleit P., Kleber H. P. Purification and characterization of an extracellular beta-lactamase produced by Acinetobacter calcoaceticus. J Gen Microbiol. 1992 Jun;138(6):1197–1202. doi: 10.1099/00221287-138-6-1197. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Bush K., Freudenberger J. S., Sykes R. B. Interaction of azthreonam and related monobactams with beta-lactamases from gram-negative bacteria. Antimicrob Agents Chemother. 1982 Sep;22(3):414–420. doi: 10.1128/aac.22.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Meester F., Frère J. M., Waley S. G., Cartwright S. J., Virden R., Lindberg F. 6-beta-Iodopenicillanate as a probe for the classification of beta-lactamases. Biochem J. 1986 Nov 1;239(3):575–580. doi: 10.1042/bj2390575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Meester F., Joris B., Reckinger G., Bellefroid-Bourguignon C., Frère J. M., Waley S. G. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol. 1987 Jul 15;36(14):2393–2403. doi: 10.1016/0006-2952(87)90609-5. [DOI] [PubMed] [Google Scholar]
  8. Felici A., Amicosante G. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases. Antimicrob Agents Chemother. 1995 Jan;39(1):192–199. doi: 10.1128/aac.39.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frère J. M., Dormans C., Duyckaerts C., De Graeve J. Interaction of beta-iodopenicillanate with the beta-lactamases of Streptomyces albus G and Actinomadura R39. Biochem J. 1982 Dec 1;207(3):437–444. doi: 10.1042/bj2070437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galleni M., Amicosante G., Frère J. M. A survey of the kinetic parameters of class C beta-lactamases. Cephalosporins and other beta-lactam compounds. Biochem J. 1988 Oct 1;255(1):123–129. doi: 10.1042/bj2550123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galleni M., Frère J. M. A survey of the kinetic parameters of class C beta-lactamases. Penicillins. Biochem J. 1988 Oct 1;255(1):119–122. doi: 10.1042/bj2550119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gehrlein M., Leying H., Cullmann W., Wendt S., Opferkuch W. Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy. 1991;37(6):405–412. doi: 10.1159/000238887. [DOI] [PubMed] [Google Scholar]
  13. Hikida M., Yoshida M., Mitsuhashi S., Inoue M. Purification and properties of a cephalosporinase from Acinetobacter calcoaceticus. J Antibiot (Tokyo) 1989 Jan;42(1):123–126. doi: 10.7164/antibiotics.42.123. [DOI] [PubMed] [Google Scholar]
  14. Joly-Guillo M. L., Vallée E., Bergogne-Bérézin E., Philippon A. Distribution of beta-lactamases and phenotype analysis in clinical strains of Acinetobacter calcoaceticus. J Antimicrob Chemother. 1988 Nov;22(5):597–604. doi: 10.1093/jac/22.5.597. [DOI] [PubMed] [Google Scholar]
  15. Joly-Guillou M. L., Bergogne-Bérézin E., Moreau N. Enzymatic resistance to beta-lactams and aminoglycosides in Acinetobacter calcoaceticus. J Antimicrob Chemother. 1987 Dec;20(6):773–776. doi: 10.1093/jac/20.6.773. [DOI] [PubMed] [Google Scholar]
  16. Kuah B. G., Kumarasinghe G., Doran J., Chang H. R. Antimicrobial susceptibilities of clinical isolates of Acinetobacter baumannii from Singapore. Antimicrob Agents Chemother. 1994 Oct;38(10):2502–2503. doi: 10.1128/aac.38.10.2502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Matagne A., Misselyn-Bauduin A. M., Joris B., Erpicum T., Granier B., Frère J. M. The diversity of the catalytic properties of class A beta-lactamases. Biochem J. 1990 Jan 1;265(1):131–146. doi: 10.1042/bj2650131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morohoshi T., Saito T. beta-Lactamase and beta-lactam antibiotics resistance in acinetobacter anitratum (syn: A. calcoaceticus). J Antibiot (Tokyo) 1977 Nov;30(11):969–973. doi: 10.7164/antibiotics.30.969. [DOI] [PubMed] [Google Scholar]
  20. Obara M., Nakae T. Mechanisms of resistance to beta-lactam antibiotics in Acinetobacter calcoaceticus. J Antimicrob Chemother. 1991 Dec;28(6):791–800. doi: 10.1093/jac/28.6.791. [DOI] [PubMed] [Google Scholar]
  21. Paul G., Joly-Guillou M. L., Bergogne-Berezin E., Névot P., Philippon A. Novel carbenicillin-hydrolyzing beta-lactamase (CARB-5) from Acinetobacter calcoaceticus var. anitratus. FEMS Microbiol Lett. 1989 May;50(1-2):45–50. doi: 10.1111/j.1574-6968.1989.tb03080.x. [DOI] [PubMed] [Google Scholar]
  22. Sato K., Nakae T. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J Antimicrob Chemother. 1991 Jul;28(1):35–45. doi: 10.1093/jac/28.1.35. [DOI] [PubMed] [Google Scholar]
  23. Traub W. H., Spohr M. Antimicrobial drug susceptibility of clinical isolates of Acinetobacter species (A. baumannii, A. haemolyticus, genospecies 3, and genospecies 6). Antimicrob Agents Chemother. 1989 Sep;33(9):1617–1619. doi: 10.1128/aac.33.9.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES