Abstract
Ceftazidime has proven to be effective for the treatment of bacterial meningitis caused by multiresistant gram-negative bacteria. Since nosocomial central nervous system infections are often accompanied by only a minor dysfunction of the blood-cerebrospinal fluid (CSF) barrier, patients with noninflammatory occlusive hydrocephalus who had undergone external ventriculostomy were studied (n = 8). Serum and CSF were drawn repeatedly after the administration of the first dose of ceftazidime (3 g over 30 min intravenously), and concentrations were determined by high-performance liquid chromatography by using UV detection. The concentrations of ceftazidime in CSF were maximal at 1 to 13 h (median, 5.5 h) after the end of the infusion and ranged from 0.73 to 2.80 mg/liter (median, 1.56 mg/liter). The elimination half-lives were 3.13 to 18.1 h (median, 10.7 h) in CSF compared with 2.02 to 5.24 h (median, 3.74 h) in serum. The ratios of the areas under the concentration-time curves in CSF and serum (AUCCSF/AUCS) ranged from 0.027 to 0.123 (median, 0.054). After the administration of a single dose of 3 g, the maximum concentrations of ceftazidime in CSF were approximately four times higher than those after the administration of 2-g intravenous doses of cefotaxime (median, 0.44 mg/liter) and ceftriaxone (median, 0.43 mg/liter) (R. Nau, H. W. Prange, P. Muth, G. Mahr, S. Menck, H. Kolenda, and F. Sörgel, Antimicrob. Agents Chemother. 37:1518-1524, 1993). The median AUCCSF/AUCS ratio of ceftazidime was slightly below that of cefotaxime (0.12), but it was 1 order of magnitude above the median AUCCSF/AUCS of ceftriaxone (0.007) (Nau et al., Antimicrob. Agents Chemother. 37:1518-1524, 1993). The concentrations of ceftazidime observed in CSF were above the MICs for most Pseudomonas aeruginosa strains. However, they are probably not high enough to be rapidly bactericidal. For this reason, the daily dose should be increased to 12 g in cases of P. aeruginosa infections of the central nervous system when the blood-CSF barrier is minimally impaired.
Full Text
The Full Text of this article is available as a PDF (196.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alestig K., Olaison L., Rylander M. Ceftazidime for Pseudomonas meningitis. Lancet. 1985 Jan 19;1(8421):161–162. doi: 10.1016/s0140-6736(85)91926-9. [DOI] [PubMed] [Google Scholar]
- Cherubin C. E., Eng R. H., Norrby R., Modai J., Humbert G., Overturf G. Penetration of newer cephalosporins into cerebrospinal fluid. Rev Infect Dis. 1989 Jul-Aug;11(4):526–548. doi: 10.1093/clinids/11.4.526. [DOI] [PubMed] [Google Scholar]
- Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drusano G. L., Standiford H. C., Fitzpatrick B., Leslie J., Tangtatsawasdi P., Ryan P., Tatem B., Moody M. R., Schimpff S. C. Comparison of the pharmacokinetics of ceftazidime and moxalactam and their microbiological correlates in volunteers. Antimicrob Agents Chemother. 1984 Sep;26(3):388–393. doi: 10.1128/aac.26.3.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emmerson A. M., Lamport P. A., Reeves D. S., Bywater M. J., Holt H. A., Wise R., Andrews J., Hall M. J. The in vitro antibacterial activity of ceftriaxone in comparison with nine other antibiotics. Curr Med Res Opin. 1985;9(7):480–493. doi: 10.1185/03007998509109622. [DOI] [PubMed] [Google Scholar]
- Fishbein D. B., Palmer D. L., Porter K. M., Reed W. P. Bacterial meningitis in the absence of CSF pleocytosis. Arch Intern Med. 1981 Sep;141(10):1369–1372. [PubMed] [Google Scholar]
- Fong I. W., Tomkins K. B. Review of Pseudomonas aeruginosa meningitis with special emphasis on treatment with ceftazidime. Rev Infect Dis. 1985 Sep-Oct;7(5):604–612. doi: 10.1093/clinids/7.5.604. [DOI] [PubMed] [Google Scholar]
- Hatch D., Overturf G. D., Kovacs A., Forthal D., Leong C. Treatment of bacterial meningitis with ceftazidime. Pediatr Infect Dis. 1986 Jul-Aug;5(4):416–420. doi: 10.1097/00006454-198607000-00007. [DOI] [PubMed] [Google Scholar]
- Lüthy R., Blaser J., Bonetti A., Simmen H., Wise R., Siegenthaler W. Comparative multiple-dose pharmacokinetics of cefotaxime, moxalactam, and ceftazidime. Antimicrob Agents Chemother. 1981 Nov;20(5):567–575. doi: 10.1128/aac.20.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore C. M., Ross M. Acute bacterial meningitis with absent or minimal cerebrospinal fluid abnormalities. A report of three cases. Clin Pediatr (Phila) 1973 Feb;12(2):117–118. doi: 10.1177/000992287301200216. [DOI] [PubMed] [Google Scholar]
- Nau R., Prange H. W., Muth P., Mahr G., Menck S., Kolenda H., Sörgel F. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother. 1993 Jul;37(7):1518–1524. doi: 10.1128/aac.37.7.1518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nau R., Sörgel F., Prange H. W. Lipophilicity at pH 7.4 and molecular size govern the entry of the free serum fraction of drugs into the cerebrospinal fluid in humans with uninflamed meninges. J Neurol Sci. 1994 Mar;122(1):61–65. doi: 10.1016/0022-510x(94)90052-3. [DOI] [PubMed] [Google Scholar]
- Nau R., Zysk G., Thiel A., Prange H. W. Pharmacokinetic quantification of the exchange of drugs between blood and cerebrospinal fluid in man. Eur J Clin Pharmacol. 1993;45(5):469–475. doi: 10.1007/BF00315520. [DOI] [PubMed] [Google Scholar]
- Norrby S. R. Role of cephalosporins in the treatment of bacterial meningitis in adults. Overview with special emphasis on ceftazidime. Am J Med. 1985 Aug 9;79(2A):56–61. doi: 10.1016/0002-9343(85)90262-1. [DOI] [PubMed] [Google Scholar]
- Powers W. J. Cerebrospinal fluid lymphocytosis in acute bacterial meningitis. Am J Med. 1985 Aug;79(2):216–220. doi: 10.1016/0002-9343(85)90012-9. [DOI] [PubMed] [Google Scholar]
- Scheld W. M., Brodeur J. P., Keeley J. M., Field M. R., Kelly W. J., 4th, Long W. J., Jr, Zak O. Evaluation of azlocillin in vitro and in discriminative animal models of infection. J Antimicrob Chemother. 1983 May;11 (Suppl B):51–68. doi: 10.1093/jac/11.suppl_b.51. [DOI] [PubMed] [Google Scholar]
- Tunkel A. R., Wispelwey B., Scheld W. M. Bacterial meningitis: recent advances in pathophysiology and treatment. Ann Intern Med. 1990 Apr 15;112(8):610–623. doi: 10.7326/0003-4819-112-8-610. [DOI] [PubMed] [Google Scholar]
- Täuber M. G., Doroshow C. A., Hackbarth C. J., Rusnak M. G., Drake T. A., Sande M. A. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis. 1984 Apr;149(4):568–574. doi: 10.1093/infdis/149.4.568. [DOI] [PubMed] [Google Scholar]
- Walstad R. A., Hellum K. B., Blika S., Dale L. G., Fredriksen T., Myhre K. I., Spencer G. R. Pharmacokinetics and tissue penetration of ceftazidime: studies on lymph, aqueous humour, skin blister, cerebrospinal and pleural fluid. J Antimicrob Chemother. 1983 Jul;12 (Suppl A):275–282. doi: 10.1093/jac/12.suppl_a.275. [DOI] [PubMed] [Google Scholar]