Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Mar;40(3):795–798. doi: 10.1128/aac.40.3.795

Pharmacokinetics in nonhuman primates of a prototype carbapenem active against methicillin-resistant Staphylococcus aureus.

J G Sundelof 1, R Thompson 1, K M White 1, M W Sasor 1, L Cama 1, H Kropp 1
PMCID: PMC163203  PMID: 8851616

Abstract

Pharmacokinetic parameters were determined for imipenem-cilastatin and a carbapenem antibiotic, L-695,256, active against methicillin-resistant Staphylococcus aureus in rhesus monkeys and a chimpanzee. L-695,256 had larger areas under the concentration-time curve than imipenem-cilastatin (30 +/- 5 versus 24 +/- 1 micrograms.h/ml in the rhesus monkeys and 77 versus 60 micrograms.h/ml in the chimpanzee) and a longer half-life at beta phase (1.2 +/- 0.1 versus 0.6 +/- 0.1 h in the rhesus monkeys and 1.0 versus 0.8 h in the chimpanzee). Resistance to hydrolysis by the renal dehydropeptidase-I allowed L-695,256 to be administered as a single agent.

Full Text

The Full Text of this article is available as a PDF (206.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boxenbaum H. G., Riegelman S., Elashoff R. M. Statistical estimations in pharmacokinetics. J Pharmacokinet Biopharm. 1974 Apr;2(2):123–148. doi: 10.1007/BF01061504. [DOI] [PubMed] [Google Scholar]
  2. Chambers H. F. In vitro and in vivo antistaphylococcal activities of L-695,256, a carbapenem with high affinity for the penicillin-binding protein PBP 2a. Antimicrob Agents Chemother. 1995 Feb;39(2):462–466. doi: 10.1128/aac.39.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Johnson A. P., Uttley A. H., Woodford N., George R. C. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev. 1990 Jul;3(3):280–291. doi: 10.1128/cmr.3.3.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kahan F. M., Kropp H., Sundelof J. G., Birnbaum J. Thienamycin: development of imipenen-cilastatin. J Antimicrob Chemother. 1983 Dec;12 (Suppl 500):1–35. doi: 10.1093/jac/12.suppl_d.1. [DOI] [PubMed] [Google Scholar]
  5. Kropp H., Sundelof J. G., Hajdu R., Kahan F. M. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother. 1982 Jul;22(1):62–70. doi: 10.1128/aac.22.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lyon B. R., Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987 Mar;51(1):88–134. doi: 10.1128/mr.51.1.88-134.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Walsh C. T. Vancomycin resistance: decoding the molecular logic. Science. 1993 Jul 16;261(5119):308–309. doi: 10.1126/science.8392747. [DOI] [PubMed] [Google Scholar]
  8. de Lencastre H., Tomasz A. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1994 Nov;38(11):2590–2598. doi: 10.1128/aac.38.11.2590. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES