Abstract
Various Pseudomonas aeruginosa PAO1 NfxB mutants were isolated on agar plates containing cefpirome and ofloxacin. They were classified into type A and type B, based on the degrees of changes in their susceptibilities. Type A mutants were four to eight times more resistant to ofloxacin, erythromycin, and new zwitterionic cephems, i.e., cefpirome, cefclidin, cefozopran, and cefoselis, than was the parent strain, PAO1. In contrast, type B mutants were more resistant to tetracycline and chloramphenicol, as well as ofloxacin, erythromycin, and the new zwitterionic cephems, than was PAO1, and they were four to eight times more susceptible to carbenicillin, sulbenicillin, imipenem, panipenem, biapenem, moxalactam, aztreonam, gentamicin, and kanamycin that was PAO1. The changes in susceptibilities of type B mutants were greater than those of type A mutants. The susceptibilities of both type A and type B mutants were restored to the level of PAO1 by transformation with plasmid pNF111, which contained the wild-type nfxB gene, demonstrating that they are NfxB mutants. Immunoblot analysis with a monoclonal antibody to OprJ revealed that type B mutants produced larger amounts of outer membrane protein OprJ than did type A mutants and that PAO1 produced an undetectable amount of it. Moreover, transconjugants obtained with the different types of NfxB mutants as the donor strains showed almost the same phenotypes as the corresponding donor strains. These results suggest that there are at least two nfxB mutations that show different phenotypes and that production of OprJ is associated with changes in susceptibilities of NfxB mutants.
Full Text
The Full Text of this article is available as a PDF (249.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angus B. L., Carey A. M., Caron D. A., Kropinski A. M., Hancock R. E. Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother. 1982 Feb;21(2):299–309. doi: 10.1128/aac.21.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu K. P., Foleno B. D., Lafredo S. C., LoCoco J. M., Isaacson D. M. In vitro and in vivo antibacterial activities of FK037, a novel parenteral broad-spectrum cephalosporin. Antimicrob Agents Chemother. 1993 Feb;37(2):301–307. doi: 10.1128/aac.37.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda H., Hosaka M., Hirai K., Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother. 1990 Sep;34(9):1757–1761. doi: 10.1128/aac.34.9.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gotoh N., Itoh N., Tsujimoto H., Yamagishi J., Oyamada Y., Nishino T. Isolation of OprM-deficient mutants of Pseudomonas aeruginosa by transposon insertion mutagenesis: evidence of involvement in multiple antibiotic resistance. FEMS Microbiol Lett. 1994 Oct 1;122(3):267–273. doi: 10.1111/j.1574-6968.1994.tb07179.x. [DOI] [PubMed] [Google Scholar]
- Gotoh N., Tsujimoto H., Poole K., Yamagishi J., Nishino T. The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon. Antimicrob Agents Chemother. 1995 Nov;39(11):2567–2569. doi: 10.1128/aac.39.11.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirai K., Suzue S., Irikura T., Iyobe S., Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1987 Apr;31(4):582–586. doi: 10.1128/aac.31.4.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosaka M., Gotoh N., Nishino T. Purification of a 54-kilodalton protein (OprJ) produced in NfxB mutants of Pseudomonas aeruginosa and production of a monoclonal antibody specific to OprJ. Antimicrob Agents Chemother. 1995 Aug;39(8):1731–1735. doi: 10.1128/aac.39.8.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh Y., Soldati L., Leisinger T., Haas D. Low- and intermediate-copy-number cloning vectors based on the Pseudomonas plasmid pVS1. Antonie Van Leeuwenhoek. 1988;54(6):567–573. doi: 10.1007/BF00588392. [DOI] [PubMed] [Google Scholar]
- Iwahi T., Okonogi K., Yamazaki T., Shiki S., Kondo M., Miyake A., Imada A. In vitro and in vivo activities of SCE-2787, a new parenteral cephalosporin with a broad antibacterial spectrum. Antimicrob Agents Chemother. 1992 Jul;36(7):1358–1366. doi: 10.1128/aac.36.7.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lewis K. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci. 1994 Mar;19(3):119–123. doi: 10.1016/0968-0004(94)90204-6. [DOI] [PubMed] [Google Scholar]
- Masuda N., Ohya S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992 Sep;36(9):1847–1851. doi: 10.1128/aac.36.9.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masuda N., Sakagawa E., Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995 Mar;39(3):645–649. doi: 10.1128/AAC.39.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto H., Ohta S., Kobayashi R., Terawaki Y. Chromosomal location of genes participating in the degradation of purines in Pseudomonas aeruginosa. Mol Gen Genet. 1978 Nov 29;167(2):165–176. doi: 10.1007/BF00266910. [DOI] [PubMed] [Google Scholar]
- Matsumoto H., Tazaki T. FP5 factor, an undescribed sex factor of Pseudomonas aeruginosa. Jpn J Microbiol. 1973 Sep;17(5):409–417. doi: 10.1111/j.1348-0421.1973.tb00792.x. [DOI] [PubMed] [Google Scholar]
- Nakagawa S., Hashizume T., Matsuda K., Sanada M., Okamoto O., Fukatsu H., Tanaka N. In vitro activity of a new carbapenem antibiotic, BO-2727, with potent antipseudomonal activity. Antimicrob Agents Chemother. 1993 Dec;37(12):2756–2759. doi: 10.1128/aac.37.12.2756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
- Nikaido H. Role of permeability barriers in resistance to beta-lactam antibiotics. Pharmacol Ther. 1985;27(2):197–231. doi: 10.1016/0163-7258(85)90069-5. [DOI] [PubMed] [Google Scholar]
- Okazaki T., Hirai K. Cloning and nucleotide sequence of the Pseudomonas aeruginosa nfxB gene, conferring resistance to new quinolones. FEMS Microbiol Lett. 1992 Oct 1;76(1-2):197–202. doi: 10.1016/0378-1097(92)90386-3. [DOI] [PubMed] [Google Scholar]
- Okazaki T., Iyobe S., Hashimoto H., Hirai K. Cloning and characterization of a DNA fragment that complements the nfxB mutation in Pseudomonas aeruginosa PAO. FEMS Microbiol Lett. 1991 Mar 15;63(1):31–35. doi: 10.1016/0378-1097(91)90522-c. [DOI] [PubMed] [Google Scholar]
- Poole K., Krebes K., McNally C., Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol. 1993 Nov;175(22):7363–7372. doi: 10.1128/jb.175.22.7363-7372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rella M., Haas D. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother. 1982 Aug;22(2):242–249. doi: 10.1128/aac.22.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe N., Hiruma R., Katsu K. In vitro evaluation of E1077, a new cephalosporin with a broad antibacterial spectrum. Antimicrob Agents Chemother. 1992 Mar;36(3):589–597. doi: 10.1128/aac.36.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura F., Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol. 1982 Nov;152(2):636–642. doi: 10.1128/jb.152.2.636-642.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]