Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Apr;40(4):966–972. doi: 10.1128/aac.40.4.966

Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis.

H J Bootsma 1, H van Dijk 1, J Verhoef 1, A Fleer 1, F R Mooi 1
PMCID: PMC163240  PMID: 8849261

Abstract

A rapid increase in the prevalence of beta-lactamase-producing Moraxella (Branhamella) catarrhalis strains has been noticed during the last decades. Today, more than 80% of strains isolated worldwide produce beta-lactamase. To investigate beta-lactamase(s) of M. catarrhalis at the molecular level, the BRO-1 beta-lactamase gene (bla) was isolated as part of a 4,223-bp HindIII fragment. Sequence analysis indicated that bla encodes a polypeptide of 314 amino acid residues. Insertional inactivation of bla in M. catarrhalis resulted in complete abrogation of beta-lactamase production and ampicillin resistance, demonstrating that bla is solely responsible for beta-lactam resistance. Comparison with other beta-lactamases suggested that M. catarrhalis beta-lactamase is a unique enzyme with conserved residues at the active sites. The presence of a signal sequence for lipoproteins suggested that it is lipid modified at its N terminus. In keeping with this assumption was the observation that 10% of beta-lactamase activity was found in the membrane compartment of M. catarrhalis. M. catarrhalis strains produce two types of beta-lactamase, BRO-1 and BRO-2, which differ in their isoelectric points. The BRO-1 and BRO-2 genes from two ATCC strains of M. catarrhalis were sequenced, and only one amino acid difference was found between the predicted products. However, there was a 21-bp deletion in the promoter region of the BRO-2 gene, possibly explaining the lower level of production of BRO-2. The G + C content of bla (31%) was significantly lower than those of the flanking genes (47 and 50%), and the overall G + C content of the M. catarrhalis genome (41%). These results indicate that bla was acquired by horizontal gene transfer from another, still unknown species.

Full Text

The Full Text of this article is available as a PDF (332.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Ambler R. P., Coulson A. F., Frère J. M., Ghuysen J. M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991 May 15;276(Pt 1):269–270. doi: 10.1042/bj2760269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barthélémy M., Peduzzi J., Labia R. Complete amino acid sequence of p453-plasmid-mediated PIT-2 beta-lactamase (SHV-1). Biochem J. 1988 Apr 1;251(1):73–79. doi: 10.1042/bj2510073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black W. J., Falkow S. Construction and characterization of Bordetella pertussis toxin mutants. Infect Immun. 1987 Oct;55(10):2465–2470. doi: 10.1128/iai.55.10.2465-2470.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boras G. J., Au S., Roy K. L., von Tigerstrom R. G. beta-Lactamase of Lysobacter enzymogenes: cloning, characterization and expression of the gene and comparison of the enzyme to other lactamases. J Gen Microbiol. 1993 Jun;139(Pt 6):1245–1252. doi: 10.1099/00221287-139-6-1245. [DOI] [PubMed] [Google Scholar]
  6. Boyle F. M., Georghiou P. R., Tilse M. H., McCormack J. G. Branhamella (Moraxella) catarrhalis: pathogenic significance in respiratory infections. Med J Aust. 1991 May 6;154(9):592–596. doi: 10.5694/j.1326-5377.1991.tb121219.x. [DOI] [PubMed] [Google Scholar]
  7. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell J. I., Scahill S., Gibson T., Ambler R. P. The phototrophic bacterium Rhodopseudomonas capsulata sp108 encodes an indigenous class A beta-lactamase. Biochem J. 1989 Jun 15;260(3):803–812. doi: 10.1042/bj2600803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Catlin B. W. Branhamella catarrhalis: an organism gaining respect as a pathogen. Clin Microbiol Rev. 1990 Oct;3(4):293–320. doi: 10.1128/cmr.3.4.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Christensen J. J., Keiding J., Schumacher H., Bruun B. Recognition of a new Branhamella catarrhalis beta-lactamase--BRO-3. J Antimicrob Chemother. 1991 Nov;28(5):774–775. doi: 10.1093/jac/28.5.774. [DOI] [PubMed] [Google Scholar]
  11. Davies B. I., Maesen F. P. Epidemiological and bacteriological findings on Branhamella catarrhalis respiratory infections in The Netherlands. Drugs. 1986;31 (Suppl 3):28–33. doi: 10.2165/00003495-198600313-00008. [DOI] [PubMed] [Google Scholar]
  12. Eliasson I., Kamme C. Characterization of the plasmid-mediated beta-lactamase in Branhamella catarrhalis, with special reference to substrate affinity. J Antimicrob Chemother. 1985 Feb;15(2):139–149. doi: 10.1093/jac/15.2.139. [DOI] [PubMed] [Google Scholar]
  13. Eliasson I., Kamme C., Vang M., Waley S. G. Characterization of cell-bound papain-soluble beta-lactamases in BRO-1 and BRO-2 producing strains of Moraxella (Branhamella) catarrhalis and Moraxella nonliquefaciens. Eur J Clin Microbiol Infect Dis. 1992 Apr;11(4):313–321. doi: 10.1007/BF01962070. [DOI] [PubMed] [Google Scholar]
  14. Farmer T., Reading C. beta-Lactamases of Branhamella catarrhalis and their inhibition by clavulanic acid. Antimicrob Agents Chemother. 1982 Mar;21(3):506–508. doi: 10.1128/aac.21.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fung C. P., Yeo S. F., Livermore D. M. Susceptibility of Moraxella catarrhalis isolates to beta-lactam antibiotics in relation to beta-lactamase pattern. J Antimicrob Chemother. 1994 Feb;33(2):215–222. doi: 10.1093/jac/33.2.215. [DOI] [PubMed] [Google Scholar]
  16. Ghuysen J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol. 1991;45:37–67. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  17. Hager H., Verghese A., Alvarez S., Berk S. L. Branhamella catarrhalis respiratory infections. Rev Infect Dis. 1987 Nov-Dec;9(6):1140–1149. doi: 10.1093/clinids/9.6.1140. [DOI] [PubMed] [Google Scholar]
  18. Hayashi S., Wu H. C. Lipoproteins in bacteria. J Bioenerg Biomembr. 1990 Jun;22(3):451–471. doi: 10.1007/BF00763177. [DOI] [PubMed] [Google Scholar]
  19. Helminen M. E., Maciver I., Paris M., Latimer J. L., Lumbley S. L., Cope L. D., McCracken G. H., Jr, Hansen E. J. A mutation affecting expression of a major outer membrane protein of Moraxella catarrhalis alters serum resistance and survival in vivo. J Infect Dis. 1993 Nov;168(5):1194–1201. doi: 10.1093/infdis/168.5.1194. [DOI] [PubMed] [Google Scholar]
  20. Hol C., Van Dijke E. E., Verduin C. M., Verhoef J., van Dijk H. Experimental evidence for Moraxella-induced penicillin neutralization in pneumococcal pneumonia. J Infect Dis. 1994 Dec;170(6):1613–1616. doi: 10.1093/infdis/170.6.1613. [DOI] [PubMed] [Google Scholar]
  21. Hol C., Verduin C. M., Van Dijke E. E., Verhoef J., Fleer A., van Dijk H. Complement resistance is a virulence factor of Branhamella (Moraxella) catarrhalis. FEMS Immunol Med Microbiol. 1995 Jun;11(3):207–211. doi: 10.1111/j.1574-695X.1995.tb00118.x. [DOI] [PubMed] [Google Scholar]
  22. Kamme C., Eliasson I., Knutson B. K., Vang M. Plasmid-mediated beta-lactamase in Branhamella catarrhalis. Drugs. 1986;31 (Suppl 3):55–63. doi: 10.2165/00003495-198600313-00013. [DOI] [PubMed] [Google Scholar]
  23. Kaul R., Roy K. L., Wenman W. M. Cloning, expression, and primary structure of a Chlamydia trachomatis binding protein. J Bacteriol. 1987 Nov;169(11):5152–5156. doi: 10.1128/jb.169.11.5152-5156.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lachapelle J., Dufresne J., Levesque R. C. Characterization of the blaCARB-3 gene encoding the carbenicillinase-3 beta-lactamase of Pseudomonas aeruginosa. Gene. 1991 Jun 15;102(1):7–12. doi: 10.1016/0378-1119(91)90530-o. [DOI] [PubMed] [Google Scholar]
  25. Luman I., Wilson R. W., Wallace R. J., Jr, Nash D. R. Disk diffusion susceptibility of Branhamella catarrhalis and relationship of beta-lactam zone size to beta-lactamase production. Antimicrob Agents Chemother. 1986 Nov;30(5):774–776. doi: 10.1128/aac.30.5.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malmvall B. E., Brorsson J. E., Johnsson J. In vitro sensitivity to penicillin V and beta-lactamase production of Branhamella catarrhalis. J Antimicrob Chemother. 1977 Jul;3(4):374–375. doi: 10.1093/jac/3.4.374. [DOI] [PubMed] [Google Scholar]
  27. Mayaux J. F., Cerbelaud E., Soubrier F., Yeh P., Blanche F., Pétré D. Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol. 1991 Nov;173(21):6694–6704. doi: 10.1128/jb.173.21.6694-6704.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mulero J. J., Rosenthal J. K., Fox T. D. PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA. Curr Genet. 1994 Apr;25(4):299–304. doi: 10.1007/BF00351481. [DOI] [PubMed] [Google Scholar]
  29. Murphy T. F., Sethi S. Bacterial infection in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1992 Oct;146(4):1067–1083. doi: 10.1164/ajrccm/146.4.1067. [DOI] [PubMed] [Google Scholar]
  30. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Percival A., Corkill J. E., Rowlands J., Sykes R. B. Pathogenicity of and beta-lactamase production by Branhamella (Neisseria) catarrhalis. Lancet. 1977 Dec 3;2(8049):1175–1175. doi: 10.1016/s0140-6736(77)91562-8. [DOI] [PubMed] [Google Scholar]
  32. Philippon A., Riou J. Y., Guibourdenche M., Sotolongo F. Detection, distribution and inhibition of Branhamella catarrhalis beta-lactamases. Drugs. 1986;31 (Suppl 3):64–69. doi: 10.2165/00003495-198600313-00014. [DOI] [PubMed] [Google Scholar]
  33. Sakurai Y., Tsukamoto K., Sawai T. Nucleotide sequence and characterization of a carbenicillin-hydrolyzing penicillinase gene from Proteus mirabilis. J Bacteriol. 1991 Nov;173(21):7038–7041. doi: 10.1128/jb.173.21.7038-7041.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simpson I. N., Plested S. J. The origin and properties of beta-lactamase satellite bands seen in isoelectric focusing. J Antimicrob Chemother. 1983 Aug;12(2):127–131. doi: 10.1093/jac/12.2.127. [DOI] [PubMed] [Google Scholar]
  35. Steingrube V. A., Wallace R. J., Beaulieu D. A membrane-bound precursor beta-lactamase in strains of Moraxella catarrhalis and Moraxella nonliquefaciens that produce periplasmic BRO-1 and BRO-2 beta-lactamases. J Antimicrob Chemother. 1993 Feb;31(2):237–244. doi: 10.1093/jac/31.2.237. [DOI] [PubMed] [Google Scholar]
  36. Vieira J., Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991 Apr;100:189–194. doi: 10.1016/0378-1119(91)90365-i. [DOI] [PubMed] [Google Scholar]
  37. Wallace R. J., Jr, Nash D. R., Steingrube V. A. Antibiotic susceptibilities and drug resistance in Moraxella (Branhamella) catarrhalis. Am J Med. 1990 May 14;88(5A):46S–50S. doi: 10.1016/0002-9343(90)90262-c. [DOI] [PubMed] [Google Scholar]
  38. Wallace R. J., Jr, Steingrube V. A., Nash D. R., Hollis D. G., Flanagan C., Brown B. A., Labidi A., Weaver R. E. BRO beta-lactamases of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal beta-lactamase transfer by conjugation in B. catarrhalis, M. nonliquefaciens, and M. lacunata. Antimicrob Agents Chemother. 1989 Nov;33(11):1845–1854. doi: 10.1128/aac.33.11.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wardle J. K. Branhamella catarrhalis as an indirect pathogen. Drugs. 1986;31 (Suppl 3):93–96. doi: 10.2165/00003495-198600313-00020. [DOI] [PubMed] [Google Scholar]
  40. Wilhelmsen L., Berglund G., Elmfeldt D., Samuelsson O., Svardsudd K. The Multifactor Primary Prevention Trial in Göteborg, Sweden. Comparison with a previously untreated population sample. Drugs. 1986;31 (Suppl 1):47–51. doi: 10.2165/00003495-198600311-00009. [DOI] [PubMed] [Google Scholar]
  41. Yokota E., Fujii T., Sato K., Inoue M., Mitsuhashi S. Purification and properties of a beta-lactamase produced by Branhamella catarrhalis. Antimicrob Agents Chemother. 1986 Apr;29(4):696–698. doi: 10.1128/aac.29.4.696. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES