Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Apr;40(4):973–978. doi: 10.1128/aac.40.4.973

Polyamine content of Pneumocystis carinii and response to the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine.

S Merali 1, A B Clarkson Jr 1
PMCID: PMC163241  PMID: 8849262

Abstract

Difluoromethylornithine (DFMO; eflornithine hydrochloride [Ornidyl]), a suicide inhibitor of the key polyamine biosynthesis enzyme ornithine decarboxylase (ODC), is effective in treating Pneumocystis carinii pneumonia, a common opportunistic infection associated with AIDS. Despite DFMO's specificity for ODC, the reason for its selective toxicity against P. carinii is unknown since both host and parasite are dependent on the same enzyme for polyamine biosynthesis. A new high-performance liquid chromatography method was used with P. carinii cells isolated from infected rat lungs to measure polyamine content, to confirm the presence of ODC, and to examine the effect of DFMO on polyamine concentrations. Putrescine, spermidine, and spermine were found to be present at 2.00 +/- 0.54, 1.26 +/- 0.51, and 1.59 +/- 0.91 nmol (mg of protein)-1, respectively, neither unusually high nor low values. ODC's specific activity was 79 +/- 11 pmol (mg of protein)-1 h-1, again not a remarkable value. However, the rates of both DFMO-induced polyamine depletion and subsequent repletion upon DFMO removal were unusually high. A 3-h exposure to 1 mM DFMO in vitro caused the depletion of putrescine, spermidine, and spermine to levels 12, 29, and 16%, respectively, of that of control cells. After DFMO removal and incubation for 1 h in serum-free media, polyamine levels returned to 78, 88, and 64%, respectively, of that of the control cells not exposed to DFMO. Since such depletions and repletions usually occur over periods of days rather than hours, these rapid changes may provide a clue to the selective action of DFMO against P. carinii and may guide the development of new compounds and an optimal drug administration schedule for DFMO.

Full Text

The Full Text of this article is available as a PDF (200.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albanese L., Bergeron R. J., Pegg A. E. Investigations of the mechanism by which mammalian cell growth is inhibited by N1N12-bis(ethyl)spermine. Biochem J. 1993 Apr 1;291(Pt 1):131–137. doi: 10.1042/bj2910131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arundel C. M., Nishioka K., Tofilon P. J. Effects of alpha-difluoromethylornithine-induced polyamine depletion on the radiosensitivity of a human colon carcinoma cell line. Radiat Res. 1988 Jun;114(3):634–640. [PubMed] [Google Scholar]
  3. Bacchi C. J., Nathan H. C., Hutner S. H., McCann P. P., Sjoerdsma A. Polyamine metabolism: a potential therapeutic target in trypanosomes. Science. 1980 Oct 17;210(4467):332–334. doi: 10.1126/science.6775372. [DOI] [PubMed] [Google Scholar]
  4. Bacchi C. J., Yarlett N. Effects of antagonists of polyamine metabolism on African trypanosomes. Acta Trop. 1993 Sep;54(3-4):225–236. doi: 10.1016/0001-706x(93)90095-s. [DOI] [PubMed] [Google Scholar]
  5. Bitonti A. J., Bacchi C. J., McCann P. P., Sjoerdsma A. Catalytic irreversible inhibition of Trypanosoma brucei brucei ornithine decarboxylase by substrate and product analogs and their effects on murine trypanosomiasis. Biochem Pharmacol. 1985 May 15;34(10):1773–1777. doi: 10.1016/0006-2952(85)90648-3. [DOI] [PubMed] [Google Scholar]
  6. Byers T. L., Pegg A. E. Properties and physiological function of the polyamine transport system. Am J Physiol. 1989 Sep;257(3 Pt 1):C545–C553. doi: 10.1152/ajpcell.1989.257.3.C545. [DOI] [PubMed] [Google Scholar]
  7. Clarkson A. B., Jr, Sarić M., Grady R. W. Deferoxamine and eflornithine (DL-alpha-difluoromethylornithine) in a rat model of Pneumocystis carinii pneumonia. Antimicrob Agents Chemother. 1990 Sep;34(9):1833–1835. doi: 10.1128/aac.34.9.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarkson A. B., Jr, Williams D. E., Rosenberg C. Efficacy of DL-alpha-difluoromethylornithine in a rat model of Pneumocystis carinii pneumonia. Antimicrob Agents Chemother. 1988 Aug;32(8):1158–1163. doi: 10.1128/aac.32.8.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cushion M. T., Stanforth D., Linke M. J., Walzer P. D. Method of testing the susceptibility of Pneumocystis carinii to antimicrobial agents in vitro. Antimicrob Agents Chemother. 1985 Dec;28(6):796–801. doi: 10.1128/aac.28.6.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davey R. T., Jr, Masur H. Recent advances in the diagnosis, treatment, and prevention of Pneumocystis carinii pneumonia. Antimicrob Agents Chemother. 1990 Apr;34(4):499–504. doi: 10.1128/aac.34.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerner E. W., Mamont P. S. Restoration of the polyamine contents in rat hepatoma tissue-culture cells after inhibition of polyamine biosynthesis. Relationship with cell proliferation. Eur J Biochem. 1986 Apr 1;156(1):31–35. doi: 10.1111/j.1432-1033.1986.tb09544.x. [DOI] [PubMed] [Google Scholar]
  12. Giffin B. F., McCann P. P., Bitonti A. J., Bacchi C. J. Polyamine depletion following exposure to DL-alpha-difluoromethylornithine both in vivo and in vitro initiates morphological alterations and mitochondrial activation in a monomorphic strain of Trypanosoma brucei brucei. J Protozool. 1986 May;33(2):238–243. doi: 10.1111/j.1550-7408.1986.tb05599.x. [DOI] [PubMed] [Google Scholar]
  13. Golden J. A., Sjoerdsma A., Santi D. V. Pneumocystis carinii pneumonia treated with alpha-difluoromethylornithine. A prospective study among patients with the acquired immunodeficiency syndrome. West J Med. 1984 Nov;141(5):613–623. [PMC free article] [PubMed] [Google Scholar]
  14. Griffin C. A., Slavik M., Chien S. C., Hermann J., Thompson G., Blanc O., Luk G. D., Baylin S. B., Abeloff M. D. Phase I trial and pharmacokinetic study of intravenous and oral alpha-difluoromethylornithine. Invest New Drugs. 1987;5(2):177–186. doi: 10.1007/BF00203544. [DOI] [PubMed] [Google Scholar]
  15. Grossie V. B., Jr, Ota D. M., Ajani J. A., Nishioka K. Effect of intravenous alpha-difluoromethylornithine on the polyamine levels of normal tissue and a transplantable fibrosarcoma. Cancer Res. 1987 Apr 1;47(7):1836–1840. [PubMed] [Google Scholar]
  16. Hughes W. T., Smith B. L. Efficacy of diaminodiphenylsulfone and other drugs in murine Pneumocystis carinii pneumonitis. Antimicrob Agents Chemother. 1984 Oct;26(4):436–440. doi: 10.1128/aac.26.4.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hölttä E., Hannonen P., Pispa J., Jänne J. Effect of methylglyoxal bis(guanylhydrazone) on polyamine metabolism in normal and regenerating rat liver and rat thymus. Biochem J. 1973 Nov;136(3):669–676. doi: 10.1042/bj1360669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kovacs J. A., Hiemenz J. W., Macher A. M., Stover D., Murray H. W., Shelhamer J., Lane H. C., Urmacher C., Honig C., Longo D. L. Pneumocystis carinii pneumonia: a comparison between patients with the acquired immunodeficiency syndrome and patients with other immunodeficiencies. Ann Intern Med. 1984 May;100(5):663–671. doi: 10.7326/0003-4819-100-5-663. [DOI] [PubMed] [Google Scholar]
  19. Lipschik G. Y., Masur H., Kovacs J. A. Polyamine metabolism in Pneumocystis carinii. J Infect Dis. 1991 May;163(5):1121–1127. doi: 10.1093/infdis/163.5.1121. [DOI] [PubMed] [Google Scholar]
  20. Merali S., Chin K., Grady R. W., Weissberger L., Clarkson A. B., Jr Response of rat model of Pneumocystis carinii pneumonia to continuous infusion of deferoxamine. Antimicrob Agents Chemother. 1995 Jul;39(7):1442–1444. doi: 10.1128/aac.39.7.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Merali S., Clarkson A. B., Jr Polyamine analysis using N-hydroxysuccinimidyl-6-aminoquinoyl carbamate for pre-column derivatization. J Chromatogr B Biomed Appl. 1996 Jan 26;675(2):321–326. doi: 10.1016/0378-4347(95)00363-0. [DOI] [PubMed] [Google Scholar]
  22. Nakaike S., Kashiwagi K., Terao K., Iio K., Igarashi K. Combined use of alpha-difluoromethylornithine and an inhibitor of S-adenosylmethionine decarboxylase in mice bearing P388 leukemia or Lewis lung carcinoma. Jpn J Cancer Res. 1988 Apr;79(4):501–508. doi: 10.1111/j.1349-7006.1988.tb01619.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paulson Y. J., Gilman T. M., Heseltine P. N., Sharma O. P., Boylen C. T. Eflornithine treatment of refractory Pneumocystis carinii pneumonia in patients with acquired immunodeficiency syndrome. Chest. 1992 Jan;101(1):67–74. doi: 10.1378/chest.101.1.67. [DOI] [PubMed] [Google Scholar]
  24. Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
  25. Pegg A. E., Pösö H., Shuttleworth K., Bennett R. A. Effect of inhibition of polyamine synthesis on the content of decarboxylated S-adenosylmethionine. Biochem J. 1982 Feb 15;202(2):519–526. doi: 10.1042/bj2020519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pesanti E. L., Bartlett M. S., Smith J. W. Lack of detectable activity of ornithine decarboxylase in Pneumocystis carinii. J Infect Dis. 1988 Nov;158(5):1137–1138. doi: 10.1093/infdis/158.5.1137. [DOI] [PubMed] [Google Scholar]
  27. Pfaller M. A., Riley J., Gerarden T. Polyamine depletion and growth inhibition in Candida albicans and Candida tropicalis by alpha-difluoromethylornithine and cyclohexylamine. J Med Vet Mycol. 1988 Apr;26(2):119–126. [PubMed] [Google Scholar]
  28. Pfaller M. A., Riley J., Gerarden T. Polyamine depletion and growth inhibition of Cryptococcus neoformans by alpha-difluoromethylornithine and cyclohexylamine. Mycopathologia. 1990 Oct;112(1):27–32. doi: 10.1007/BF01795176. [DOI] [PubMed] [Google Scholar]
  29. Romijn J. C., Verkoelen C. F., Splinter T. A. Problems of pharmacokinetic studies on alpha-difluoromethylornithine in mice. Cancer Chemother Pharmacol. 1987;19(1):30–34. doi: 10.1007/BF00296251. [DOI] [PubMed] [Google Scholar]
  30. Sarić M., Clarkson A. B., Jr Ornithine decarboxylase in Pneumocystis carinii and implications for therapy. Antimicrob Agents Chemother. 1994 Nov;38(11):2545–2552. doi: 10.1128/aac.38.11.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seiler N. Polyamine metabolism. Digestion. 1990;46 (Suppl 2):319–330. doi: 10.1159/000200405. [DOI] [PubMed] [Google Scholar]
  32. Sjoerdsma A., Schechter P. J. Chemotherapeutic implications of polyamine biosynthesis inhibition. Clin Pharmacol Ther. 1984 Mar;35(3):287–300. doi: 10.1038/clpt.1984.33. [DOI] [PubMed] [Google Scholar]
  33. Smith D. E., Davies S., Smithson J., Harding I., Gazzard B. G. Eflornithine versus cotrimoxazole in the treatment of Pneumocystis carinii pneumonia in AIDS patients. AIDS. 1992 Dec;6(12):1489–1493. doi: 10.1097/00002030-199212000-00011. [DOI] [PubMed] [Google Scholar]
  34. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  35. Thomas T., Thomas T. J. Estradiol control of ornithine decarboxylase mRNA, enzyme activity, and polyamine levels in MCF-7 breast cancer cells: therapeutic implications. Breast Cancer Res Treat. 1994 Feb;29(2):189–201. doi: 10.1007/BF00665680. [DOI] [PubMed] [Google Scholar]
  36. Van Nieuwenhove S. Advances in sleeping sickness therapy. Ann Soc Belg Med Trop. 1992;72 (Suppl 1):39–51. [PubMed] [Google Scholar]
  37. Vöhringer H. F., Arastéh K. Pharmacokinetic optimisation in the treatment of Pneumocystis carinii pneumonia. Clin Pharmacokinet. 1993 May;24(5):388–412. doi: 10.2165/00003088-199324050-00004. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES