Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Apr;40(4):1036–1038. doi: 10.1128/aac.40.4.1036

Reaction of roxithromycin and clarithromycin with macrolide-inactivating enzymes from highly erythromycin-resistant Escherichia coli.

K O'Hara 1, K Yamamoto 1
PMCID: PMC163256  PMID: 8849224

Abstract

The activities of two new 14-membered-ring macrolide antibiotics, roxithromycin (RXM) and clarithromycin (CAM), against highly erythromycin (EM)-resistant Escherichia coli strains were evaluated. Pretreatment of macrolide phosphotransferase (MPH) (2') I-producing strains with EM increased the MICs of EM and CAM without any noticeable change in the MIC of RXM. The MPH (2') II-producing strain was more susceptible to CAM, while the EM esterase-producing strains were more susceptible to RXM than EM. Pretreatment of these latter two strains with EM did not alter their susceptibility to either RXM or CAM. In addition, the compounds were assessed as substrates for inactivation by crude enzyme preparations. Of the 14-membered-ring macrolides, RXM was the least favored substrate for MPH (2') I or II. CAM and RXM were substrates for the EM esterase but were the least preferred of the 14-membered-ring macrolides.

Full Text

The Full Text of this article is available as a PDF (152.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andremont A., Gerbaud G., Courvalin P. Plasmid-mediated high-level resistance to erythromycin in Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):515–518. doi: 10.1128/aac.29.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andremont A., Raibaud P., Tancrède C. Effect of erythromycin on microbial antagonisms: a study in gnotobiotic mice associated with a human fecal flora. J Infect Dis. 1983 Sep;148(3):579–587. doi: 10.1093/infdis/148.3.579. [DOI] [PubMed] [Google Scholar]
  3. Andremont A., Sancho-Garnier H., Tancrede C. Epidemiology of intestinal colonization by members of the family Enterobacteriaceae highly resistant to erythromycin in a hematology-oncology unit. Antimicrob Agents Chemother. 1986 Jun;29(6):1104–1107. doi: 10.1128/aac.29.6.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andremont A., Tancrede C. Reduction of the aerobic Gram negative bacterial flora of the gastro-intestinal tract and prevention of traveller's diarrhea using oral erythromycin. Ann Microbiol (Paris) 1981 Nov-Dec;132 B(3):419–427. [PubMed] [Google Scholar]
  5. Arthur M., Andremont A., Courvalin P. Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother. 1987 Mar;31(3):404–409. doi: 10.1128/aac.31.3.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barthélémy P., Autissier D., Gerbaud G., Courvalin P. Enzymic hydrolysis of erythromycin by a strain of Escherichia coli. A new mechanism of resistance. J Antibiot (Tokyo) 1984 Dec;37(12):1692–1696. doi: 10.7164/antibiotics.37.1692. [DOI] [PubMed] [Google Scholar]
  7. Kirst H. A., Sides G. D. New directions for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother. 1989 Sep;33(9):1413–1418. doi: 10.1128/aac.33.9.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kono M., O'Hara K., Ebisu T. Purification and characterization of macrolide 2'-phosphotransferase type II from a strain of Escherichia coli highly resistant to macrolide antibiotics. FEMS Microbiol Lett. 1992 Oct 1;76(1-2):89–94. doi: 10.1016/0378-1097(92)90369-y. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Leclercq R., Courvalin P. Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob Agents Chemother. 1991 Jul;35(7):1273–1276. doi: 10.1128/aac.35.7.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Noguchi N., Emura A., Matsuyama H., O'Hara K., Sasatsu M., Kono M. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2'-phosphotransferase I in Escherichia coli. Antimicrob Agents Chemother. 1995 Oct;39(10):2359–2363. doi: 10.1128/aac.39.10.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Hara K. Application of nuclear magnetic resonance spectrometry to measure the activity of bacterial macrolide esterase. Microbios. 1994;79(321):231–239. [PubMed] [Google Scholar]
  13. O'Hara K., Kanda T., Ohmiya K., Ebisu T., Kono M. Purification and characterization of macrolide 2'-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob Agents Chemother. 1989 Aug;33(8):1354–1357. doi: 10.1128/aac.33.8.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Hara K. [Reaction mechanism of macrolide 2'-phosphotransferase from Escherichia coli to the 2'-modified macrolide antibiotics]. Jpn J Antibiot. 1993 Sep;46(9):818–826. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES