Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 May;40(5):1078–1084. doi: 10.1128/aac.40.5.1078

Evaluation of a peptidomimetic ribonucleotide reductase inhibitor with a murine model of herpes simplex virus type 1 ocular disease.

C R Brandt 1, B Spencer 1, P Imesch 1, M Garneau 1, R Déziel 1
PMCID: PMC163269  PMID: 8723444

Abstract

The ribonucleotide reductase (RR) of herpes simplex virus type 1 (HSV-1) is an important virulence factor, being required for neurovirulence, ocular virulence, and reactivation from latency. The RR activity requires the association of two distinct homodimeric subunits, and the association of the subunits is inhibited in the presence of a peptide homologous to the carboxy terminus of the small subunit. A structural analog of the inhibitory peptide (BILD 1263) has been shown to inhibit the replication of HSV-1 at micromolar concentrations in vitro. We used a mouse model of HSV-1 ocular infection to determine the in vivo efficacy of topical BILD 1263. Treatment of HSV-1 KOS-infected mice resulted in significant reductions in the severity and incidence of stromal keratitis and corneal neovascularization. At higher concentrations (5%) BILD 1263 reduced the severity but not the incidence of blepharitis. Treatment with 5% BILD 1263 also reduced viral shedding from the cornea by 10- to 14-fold (P < 0.001). In uninfected mice treated with 5% BILD 1263, we found no evidence of corneal epithelial damage, conjunctivitis, or blepharitis, and histopathological studies revealed no changes in the corneas of these mice. These results show that the peptidomimetic RR inhibitor BILD 1263 is effective in preventing disease, has an antiviral effect in vivo, and has little or no toxicity.

Full Text

The Full Text of this article is available as a PDF (446.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. P., Frink R. J., Devi G. B., Gaylord B. H., Costa R. H., Wagner E. K. Detailed characterization of the mRNA mapping in the HindIII fragment K region of the herpes simplex virus type 1 genome. J Virol. 1981 Mar;37(3):1011–1027. doi: 10.1128/jvi.37.3.1011-1027.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bacchetti S., Evelegh M. J., Muirhead B., Sartori C. S., Huszar D. Immunological characterization of herpes simplex virus type 1 and 2 polypeptide(s) involved in viral ribonucleotide reductase activity. J Virol. 1984 Feb;49(2):591–593. doi: 10.1128/jvi.49.2.591-593.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandt C. R., Coakley L. M., Grau D. R. A murine model of herpes simplex virus-induced ocular disease for antiviral drug testing. J Virol Methods. 1992 Mar;36(3):209–222. doi: 10.1016/0166-0934(92)90052-f. [DOI] [PubMed] [Google Scholar]
  4. Brandt C. R., Kintner R. L., Pumfery A. M., Visalli R. J., Grau D. R. The herpes simplex virus ribonucleotide reductase is required for ocular virulence. J Gen Virol. 1991 Sep;72(Pt 9):2043–2049. doi: 10.1099/0022-1317-72-9-2043. [DOI] [PubMed] [Google Scholar]
  5. Cameron J. M., McDougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol. 1988 Oct;69(Pt 10):2607–2612. doi: 10.1099/0022-1317-69-10-2607. [DOI] [PubMed] [Google Scholar]
  6. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature. 1986 May 22;321(6068):441–443. doi: 10.1038/321441a0. [DOI] [PubMed] [Google Scholar]
  7. Coster D. J., McKinnon J. R., McGill J. I., Jones B. R., Fraunfelder F. T. Clinical evaluation of adenine arabinoside and trifluorothymidine in the treatment of corneal ulcers caused by herpes simplex virus. J Infect Dis. 1976 Jun;133 (Suppl):A173–A177. doi: 10.1093/infdis/133.supplement_2.a173. [DOI] [PubMed] [Google Scholar]
  8. Dutia B. M., Frame M. C., Subak-Sharpe J. H., Clark W. N., Marsden H. S. Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature. 1986 May 22;321(6068):439–441. doi: 10.1038/321439a0. [DOI] [PubMed] [Google Scholar]
  9. Dutia B. M. Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. J Gen Virol. 1983 Mar;64(Pt 3):513–521. doi: 10.1099/0022-1317-64-3-513. [DOI] [PubMed] [Google Scholar]
  10. Field H. J., Bell S. E., Elion G. B., Nash A. A., Wildy P. Effect of acycloguanosine treatment of acute and latent herpes simplex infections in mice. Antimicrob Agents Chemother. 1979 Apr;15(4):554–561. doi: 10.1128/aac.15.4.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frame M. C., Marsden H. S., Dutia B. M. The ribonucleotide reductase induced by herpes simplex virus type 1 involves minimally a complex of two polypeptides (136K and 38K). J Gen Virol. 1985 Jul;66(Pt 7):1581–1587. doi: 10.1099/0022-1317-66-7-1581. [DOI] [PubMed] [Google Scholar]
  12. Grau D. R., Visalli R. J., Brandt C. R. Herpes simplex virus stromal keratitis is not titer-dependent and does not correlate with neurovirulence. Invest Ophthalmol Vis Sci. 1989 Dec;30(12):2474–2480. [PubMed] [Google Scholar]
  13. Honess R. W., Roizman B. Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cell. J Virol. 1973 Dec;12(6):1347–1365. doi: 10.1128/jvi.12.6.1347-1365.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huszar D., Bacchetti S. Partial purification and characterization of the ribonucleotide reductase induced by herpes simplex virus infection of mammalian cells. J Virol. 1981 Feb;37(2):580–588. doi: 10.1128/jvi.37.2.580-588.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Høvding G. A comparison between acyclovir and trifluorothymidine ophthalmic ointment in the treatment of epithelial dendritic keratitis. A double blind, randomized parallel group trial. Acta Ophthalmol (Copenh) 1989 Feb;67(1):51–54. doi: 10.1111/j.1755-3768.1989.tb00722.x. [DOI] [PubMed] [Google Scholar]
  16. Idowu A. D., Fraser-Smith E. B., Poffenberger K. L., Herman R. C. Deletion of the herpes simplex virus type 1 ribonucleotide reductase gene alters virulence and latency in vivo. Antiviral Res. 1992 Feb;17(2):145–156. doi: 10.1016/0166-3542(92)90048-a. [DOI] [PubMed] [Google Scholar]
  17. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology. 1989 Nov;173(1):276–283. doi: 10.1016/0042-6822(89)90244-4. [DOI] [PubMed] [Google Scholar]
  18. KAUFMAN H. E., HEIDELBERGER C. THERAPEUTIC ANTIVIRAL ACTION OF 5-TRIFLUOROMETHYL-2'-DEOXYURIDINE IN HERPES SIMPLEX KERATITIS. Science. 1964 Aug 7;145(3632):585–586. doi: 10.1126/science.145.3632.585. [DOI] [PubMed] [Google Scholar]
  19. KAUFMAN H. E., NESBURN A. B., MALONEY E. D. IDU therapy of herpes simplex. Arch Ophthalmol. 1962 May;67:583–591. doi: 10.1001/archopht.1962.00960020583012. [DOI] [PubMed] [Google Scholar]
  20. Kintner R. L., Brandt C. R. The effect of viral inoculum level and host age on disease incidence, disease severity, and mortality in a murine model of ocular HSV-1 infection. Curr Eye Res. 1995 Feb;14(2):145–152. doi: 10.3109/02713689508999926. [DOI] [PubMed] [Google Scholar]
  21. Klein R. J., Friedman-Kien A. E., DeStefano E. Latent herpes simplex virus infections in sensory ganglia of hairless mice prevented by acycloguanosine. Antimicrob Agents Chemother. 1979 May;15(5):723–729. doi: 10.1128/aac.15.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liuzzi M., Déziel R., Moss N., Beaulieu P., Bonneau A. M., Bousquet C., Chafouleas J. G., Garneau M., Jaramillo J., Krogsrud R. L. A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature. 1994 Dec 15;372(6507):695–698. doi: 10.1038/372695a0. [DOI] [PubMed] [Google Scholar]
  23. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. 1988 Jul;69(Pt 7):1531–1574. doi: 10.1099/0022-1317-69-7-1531. [DOI] [PubMed] [Google Scholar]
  24. McGill J., Tormey P., Walker C. B. Comparative trial of acyclovir and adenine arabinoside in the treatment of herpes simplex corneal ulcers. Br J Ophthalmol. 1981 Sep;65(9):610–613. doi: 10.1136/bjo.65.9.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McLauchlan J., Clements J. B. Organization of the herpes simplex virus type 1 transcription unit encoding two early proteins with molecular weights of 140000 and 40000. J Gen Virol. 1983 May;64(Pt 5):997–1006. doi: 10.1099/0022-1317-64-5-997. [DOI] [PubMed] [Google Scholar]
  26. Paradis H., Gaudreau P., Brazeau P., Langelier Y. Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxyl terminus of its subunit 2. Specific binding of a photoaffinity analog, [4'- azido-Phe6] HSV H2-6(6-15), to subunit 1. J Biol Chem. 1988 Nov 5;263(31):16045–16050. [PubMed] [Google Scholar]
  27. Patterson A., Jones B. R. The management of ocular herpes. Trans Ophthalmol Soc U K. 1967;87:59–84. [PubMed] [Google Scholar]
  28. Pavan-Langston D., Foster C. S. Trifluorothymidine and idoxuridine therapy of ocular herpes. Am J Ophthalmol. 1977 Dec;84(6):818–825. doi: 10.1016/0002-9394(77)90504-9. [DOI] [PubMed] [Google Scholar]
  29. Ponce de Leon M., Eisenberg R. J., Cohen G. H. Ribonucleotide reductase from herpes simplex virus (types 1 and 2) infected and uninfected KB cells: properties of the partially purified enzymes. J Gen Virol. 1977 Jul;36(1):163–173. doi: 10.1099/0022-1317-36-1-163. [DOI] [PubMed] [Google Scholar]
  30. Preston V. G., Palfreyman J. W., Dutia B. M. Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. J Gen Virol. 1984 Sep;65(Pt 9):1457–1466. doi: 10.1099/0022-1317-65-9-1457. [DOI] [PubMed] [Google Scholar]
  31. Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349–374. doi: 10.1146/annurev.bi.57.070188.002025. [DOI] [PubMed] [Google Scholar]
  32. Wellings P. C., Awdry P. N., Bors F. H., Jones B. R., Brown D. C., Kaufman H. E. Clinical evaluation of trifluorothymidine in the treatment of herpes simplex corneal ulcers. Am J Ophthalmol. 1972 Jun;73(6):932–942. doi: 10.1016/0002-9394(72)90463-1. [DOI] [PubMed] [Google Scholar]
  33. Yamada Y., Kimura H., Morishima T., Daikoku T., Maeno K., Nishiyama Y. The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type 1 in mice. J Infect Dis. 1991 Dec;164(6):1091–1097. doi: 10.1093/infdis/164.6.1091. [DOI] [PubMed] [Google Scholar]
  34. Young B. J., Patterson A., Ravenscroft T. A randomised double-blind clinical trial of acyclovir (Zovirax) and adenine arabinoside in herpes simplex corneal ulceration. Br J Ophthalmol. 1982 Jun;66(6):361–363. doi: 10.1136/bjo.66.6.361. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES