Abstract
Postinfusion data obtained from 17 patients with cystic fibrosis participating in two clinical trials were used to develop population models for ceftazidime pharmacokinetics during continuous infusion. Determinant (D)-optimal sampling strategy (OSS) was used to evaluate the benefits of merging four maximally informative sampling times with population modeling. Full and sparse D-optimal sampling data sets were analyzed with the nonparametric expectation maximization (NPEM) algorithm and compared with the model obtained by the traditional standard two-stage approach. Individual pharmacokinetic parameter estimates were calculated by weighted nonlinear least-squares regression and by maximum a posteriori probability Bayesian estimator. Individual parameter estimates obtained with four D-optimally timed serum samples (OSS4) showed excellent correlation with parameter estimates obtained by using full data sets. The parameters of interest, clearance and volume of distribution, showed excellent agreement (R2 = 0.89 and R2 = 0.86). The ceftazidime population models were described as two-compartment kslope models, relating elimination constants to renal function. The NPEM-OSS4 model was described by the equations kel = 0.06516+ (0.00708.CLCR) and V1 = 0.1773 +/- 0.0406 liter/kg where CLCR is creatinine clearance in milliliters per minute per 1.73 m2, V1 is the volume of distribution of the central compartment, and kel is the elimination rate constant. Predictive performance evaluation for 31 patients with data which were not part of the model data sets showed that the NPEM-ALL model performed best, with significantly better precision than that of the standard two-stage model (P < 0.001). Predictions with the NPEM-OSS4 model were as precise as those with the NPEM-ALL model but slightly biased (-2.2 mg/liter; P < 0.01). D-optimal monitoring strategies coupled with population modeling results in useful and cost-effective population models and will be of advantage in clinical practice, as it allows pharmacokinetic-pharmacodynamic modeling with sparse data, thus describing the relationship between ceftazidime exposure and response in the treatment of acute exacerbations in patients with cystic fibrosis.
Full Text
The Full Text of this article is available as a PDF (246.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker W., Vinks A. A., Mouton J. W., de Jonge P., Verzijl J. G., Heijerman H. G. Continue intraveneuze thuisbehandeling van luchtweginfecties met ceftazidim via een draagbare pomp bij patiënten met cystische fibrose; een multicentrisch onderzoek. Ned Tijdschr Geneeskd. 1993 Nov 27;137(48):2486–2491. [PubMed] [Google Scholar]
- D'Argenio D. Z. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981 Dec;9(6):739–756. doi: 10.1007/BF01070904. [DOI] [PubMed] [Google Scholar]
- D'Argenio D. Z., Schumitzky A. A program package for simulation and parameter estimation in pharmacokinetic systems. Comput Programs Biomed. 1979 Mar;9(2):115–134. doi: 10.1016/0010-468x(79)90025-4. [DOI] [PubMed] [Google Scholar]
- Drusano G. L., Forrest A., Plaisance K. I., Wade J. C. A prospective evaluation of optimal sampling theory in the determination of the steady-state pharmacokinetics of piperacillin in febrile neutropenic cancer patients. Clin Pharmacol Ther. 1989 Jun;45(6):635–641. doi: 10.1038/clpt.1989.84. [DOI] [PubMed] [Google Scholar]
- Drusano G. L., Forrest A., Snyder M. J., Reed M. D., Blumer J. L. An evaluation of optimal sampling strategy and adaptive study design. Clin Pharmacol Ther. 1988 Aug;44(2):232–238. doi: 10.1038/clpt.1988.142. [DOI] [PubMed] [Google Scholar]
- Drusano G. L. Optimal sampling theory and population modelling: application to determination of the influence of the microgravity environment on drug distribution and elimination. J Clin Pharmacol. 1991 Oct;31(10):962–967. doi: 10.1002/j.1552-4604.1991.tb03657.x. [DOI] [PubMed] [Google Scholar]
- Forrest A., Ballow C. H., Nix D. E., Birmingham M. C., Schentag J. J. Development of a population pharmacokinetic model and optimal sampling strategies for intravenous ciprofloxacin. Antimicrob Agents Chemother. 1993 May;37(5):1065–1072. doi: 10.1128/aac.37.5.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallynck T. H., Soep H. H., Thomis J. A., Boelaert J., Daneels R., Dettli L. Should clearance be normalised to body surface or to lean body mass? Br J Clin Pharmacol. 1981 May;11(5):523–526. doi: 10.1111/j.1365-2125.1981.tb01163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jelliffe R. W., Iglesias T., Hurst A. K., Foo K. A., Rodriguez J. Individualising gentamicin dosage regimens. A comparative review of selected models, data fitting methods and monitoring strategies. Clin Pharmacokinet. 1991 Dec;21(6):461–478. doi: 10.2165/00003088-199121060-00006. [DOI] [PubMed] [Google Scholar]
- Jelliffe R. W., Schumitzky A., Van Guilder M., Liu M., Hu L., Maire P., Gomis P., Barbaut X., Tahani B. Individualizing drug dosage regimens: roles of population pharmacokinetic and dynamic models, Bayesian fitting, and adaptive control. Ther Drug Monit. 1993 Oct;15(5):380–393. [PubMed] [Google Scholar]
- Proost J. H., Meijer D. K. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med. 1992 May;22(3):155–163. doi: 10.1016/0010-4825(92)90011-b. [DOI] [PubMed] [Google Scholar]
- Sheiner L. B., Beal S. L. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981 Aug;9(4):503–512. doi: 10.1007/BF01060893. [DOI] [PubMed] [Google Scholar]
- Sheiner L. B., Rosenberg B., Marathe V. V. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977 Oct;5(5):445–479. doi: 10.1007/BF01061728. [DOI] [PubMed] [Google Scholar]
- Vinks A. A., Touw D. J., Heijerman H. G., Danhof M., de Leede G. P., Bakker W. Pharmacokinetics of ceftazidime in adult cystic fibrosis patients during continuous infusion and ambulatory treatment at home. Ther Drug Monit. 1994 Aug;16(4):341–348. doi: 10.1097/00007691-199408000-00002. [DOI] [PubMed] [Google Scholar]
- Yuen G. J., Drusano G. L., Forrest A., Plaisance K., Caplan E. S. Prospective use of optimal sampling theory: steady-state ciprofloxacin pharmacokinetics in critically ill trauma patients. Clin Pharmacol Ther. 1989 Oct;46(4):451–457. doi: 10.1038/clpt.1989.164. [DOI] [PubMed] [Google Scholar]
