Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 May;40(5):1143–1147. doi: 10.1128/aac.40.5.1143

Modeling combinations of antiretroviral agents in vitro with integration of pharmacokinetics: guidance in regimen choice for clinical trial evaluation.

G L Drusano 1, M Prichard 1, P A Bilello 1, J A Bilello 1
PMCID: PMC163280  PMID: 8723455

Abstract

We propose a method for the selection of doses and dosing schedule for drugs to be used in combination. This approach uses the simulation of steady-state concentrations of the drugs in the combination and overlays these concentrations onto a three-dimensional effect surface. The MacSynergy II program is used to construct the three-dimensional drug interaction surface from the direct evaluation of drug combination effect in vitro. The study examined the combination of an inhibitor of the human immunodeficiency virus protease, A-77003, and the nucleoside analog zidovudine. Zidovudine concentrations from a steady-state interval were simulated on the basis of the administration of 100 mg every 12 h by mouth, while for A-77003 simulation profiles were for intravenous administration of 800 mg every 4 h as well as a continuous infusion of 200 mg/h. The average percentage of the maximal effect was taken as a measure of regimen effectiveness. Three different schedules of administration were examined. If both drugs were to be administered simultaneously, the model predicts a mean maximal effect of a steady-state interval (12 h) of 67%. If the drug doses were offset by 2 h, the mean maximal effect predicted was 71%. If A-77003 was to be given by continuous infusion, the mean maximal effect predicted was 90%. This method holds promise as a way of quickly evaluating potential combinations of agents that takes into account the drug interaction in a mathematically robust way and that allows the evaluation of the effect of each drug's pharmacokinetic profile.

Full Text

The Full Text of this article is available as a PDF (241.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belen'kii M. S., Schinazi R. F. Multiple drug effect analysis with confidence interval. Antiviral Res. 1994 Sep;25(1):1–11. doi: 10.1016/0166-3542(94)90089-2. [DOI] [PubMed] [Google Scholar]
  2. Bilello J. A., Bauer G., Dudley M. N., Cole G. A., Drusano G. L. Effect of 2',3'-didehydro-3'-deoxythymidine in an in vitro hollow-fiber pharmacodynamic model system correlates with results of dose-ranging clinical studies. Antimicrob Agents Chemother. 1994 Jun;38(6):1386–1391. doi: 10.1128/aac.38.6.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilello J. A., Bilello P. A., Kort J. J., Dudley M. N., Leonard J., Drusano G. L. Efficacy of constant infusion of A-77003, an inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease, in limiting acute HIV-1 infection in vitro. Antimicrob Agents Chemother. 1995 Nov;39(11):2523–2527. doi: 10.1128/aac.39.11.2523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilello J. A., Bilello P. A., Prichard M., Robins T., Drusano G. L. Reduction of the in vitro activity of A77003, an inhibitor of human immunodeficiency virus protease, by human serum alpha 1 acid glycoprotein. J Infect Dis. 1995 Mar;171(3):546–551. doi: 10.1093/infdis/171.3.546. [DOI] [PubMed] [Google Scholar]
  5. Culberson J. C., Bush B. L., Sardana V. V. Qualitative study of drug resistance in retroviral protease using structural modeling and site-directed mutagenesis. Methods Enzymol. 1994;241:385–394. doi: 10.1016/0076-6879(94)41075-5. [DOI] [PubMed] [Google Scholar]
  6. Debouck C. The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Hum Retroviruses. 1992 Feb;8(2):153–164. doi: 10.1089/aid.1992.8.153. [DOI] [PubMed] [Google Scholar]
  7. Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., Mitsuya H. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8333–8337. doi: 10.1073/pnas.83.21.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gitterman S. R., Drusano G. L., Egorin M. J., Standiford H. C. Population pharmacokinetics of zidovudine. The Veterans Administration Cooperative Studies Group. Clin Pharmacol Ther. 1990 Aug;48(2):161–167. doi: 10.1038/clpt.1990.131. [DOI] [PubMed] [Google Scholar]
  9. Krown S. E., Paredes J., Bundow D., Polsky B., Gold J. W., Flomenberg N. Interferon-alpha, zidovudine, and granulocyte-macrophage colony-stimulating factor: a phase I AIDS Clinical Trials Group study in patients with Kaposi's sarcoma associated with AIDS. J Clin Oncol. 1992 Aug;10(8):1344–1351. doi: 10.1200/JCO.1992.10.8.1344. [DOI] [PubMed] [Google Scholar]
  10. Mayers D. L., Japour A. J., Arduino J. M., Hammer S. M., Reichman R., Wagner K. F., Chung R., Lane J., Crumpacker C. S., McLeod G. X. Dideoxynucleoside resistance emerges with prolonged zidovudine monotherapy. The RV43 Study Group. Antimicrob Agents Chemother. 1994 Feb;38(2):307–314. doi: 10.1128/aac.38.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prichard M. N., Prichard L. E., Shipman C., Jr Strategic design and three-dimensional analysis of antiviral drug combinations. Antimicrob Agents Chemother. 1993 Mar;37(3):540–545. doi: 10.1128/aac.37.3.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reedijk M., Boucher C. A., van Bommel T., Ho D. D., Tzeng T. B., Sereni D., Veyssier P., Jurriaans S., Granneman R., Hsu A. Safety, pharmacokinetics, and antiviral activity of A77003, a C2 symmetry-based human immunodeficiency virus protease inhibitor. Antimicrob Agents Chemother. 1995 Jul;39(7):1559–1564. doi: 10.1128/aac.39.7.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Richman D., Shih C. K., Lowy I., Rose J., Prodanovich P., Goff S., Griffin J. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11241–11245. doi: 10.1073/pnas.88.24.11241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saag M. S., Emini E. A., Laskin O. L., Douglas J., Lapidus W. I., Schleif W. A., Whitley R. J., Hildebrand C., Byrnes V. W., Kappes J. C. A short-term clinical evaluation of L-697,661, a non-nucleoside inhibitor of HIV-1 reverse transcriptase. L-697,661 Working Group. N Engl J Med. 1993 Oct 7;329(15):1065–1072. doi: 10.1056/NEJM199310073291502. [DOI] [PubMed] [Google Scholar]
  15. Weber R., Bonetti A., Jost J., Vogt M. W., Spacey B., Siegenthaler W., Lüthy R. Low-dose zidovudine in combination with either acyclovir or lymphoblastoid interferon-alpha in asymptomatic HIV-infected patients: a pilot study. Infection. 1991 Nov-Dec;19(6):395–400. doi: 10.1007/BF01726447. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES