Abstract
The in vitro and in vivo activities of CS-940, a new 6-fluoro-8-difluoromethoxy quinolone, were compared with those of ciprofloxacin, tosufloxacin, sparfloxacin, and levofloxacin. The in vitro activity of CS-940 against gram-positive bacteria was nearly equal to or greater than those of the other quinolones tested. In particular, CS-940 was two to eight times more active against methicillin-resistant Staphylococcus aureus than the other quinolones, at the MIC at which 90% of the clinical isolates are inhibited. Against gram-negative bacteria, the activity of CS-940 was comparable to or greater than those of tosufloxacin, sparfloxacin, and levofloxacin, while it was lower than that of ciprofloxacin. The activity of CS-940 was largely unaffected by medium, inoculum size, or the addition of horse serum, but it was decreased under acidic conditions, as was also seen with the other quinolones tested. CS-940 showed potent bactericidal activity against S. aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In oral treatment of mouse systemic infections caused by S. aureus, Streptococcus pneumoniae, Streptococcus pyogenes, E. coli, K. pneumoniae, Serratia marcescens, and P. aeruginosa, CS-940 was more effective than ciprofloxacin, sparfloxacin, and levofloxacin against all strains tested. Against experimental pneumonia with K. pneumoniae in mice, CS-940 was the most effective of all the quinolones tested. These results suggest that CS-940 may be effective in the therapy of various bacterial infections.
Full Text
The Full Text of this article is available as a PDF (245.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bliss C. I. THE METHOD OF PROBITS. Science. 1934 Jan 12;79(2037):38–39. doi: 10.1126/science.79.2037.38. [DOI] [PubMed] [Google Scholar]
- Fujimaki K., Noumi T., Saikawa I., Inoue M., Mitsuhashi S. In vitro and in vivo antibacterial activities of T-3262, a new fluoroquinolone. Antimicrob Agents Chemother. 1988 Jun;32(6):827–833. doi: 10.1128/aac.32.6.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujimoto T., Mitsuhashi S. In vitro antibacterial activity of DR-3355, the S-(-)-isomer of ofloxacin. Chemotherapy. 1990;36(4):268–276. doi: 10.1159/000238777. [DOI] [PubMed] [Google Scholar]
- Hosaka M., Yasue T., Fukuda H., Tomizawa H., Aoyama H., Hirai K. In vitro and in vivo antibacterial activities of AM-1155, a new 6-fluoro-8-methoxy quinolone. Antimicrob Agents Chemother. 1992 Oct;36(10):2108–2117. doi: 10.1128/aac.36.10.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imada T., Miyazaki S., Nishida M., Yamaguchi K., Goto S. In vitro and in vivo antibacterial activities of a new quinolone, OPC-17116. Antimicrob Agents Chemother. 1992 Mar;36(3):573–579. doi: 10.1128/aac.36.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito A., Hirai K., Inoue M., Koga H., Suzue S., Irikura T., Mitsuhashi S. In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob Agents Chemother. 1980 Feb;17(2):103–108. doi: 10.1128/aac.17.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima T., Inoue M., Mitsuhashi S. In vitro activity of AT-4140 against clinical bacterial isolates. Antimicrob Agents Chemother. 1989 Nov;33(11):1980–1988. doi: 10.1128/aac.33.11.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obana Y., Nishino T., Tanino T. Therapeutic efficacy of beta-lactam and aminoglycoside antibiotics on experimental pneumonia caused by Klebsiella pneumoniae B-54 in diabetic mice. J Antibiot (Tokyo) 1985 Jul;38(7):941–947. doi: 10.7164/antibiotics.38.941. [DOI] [PubMed] [Google Scholar]
- Ozaki M., Matsuda M., Tomii Y., Kimura K., Segawa J., Kitano M., Kise M., Shibata K., Otsuki M., Nishino T. In vivo evaluation of NM441, a new thiazeto-quinoline derivative. Antimicrob Agents Chemother. 1991 Dec;35(12):2496–2499. doi: 10.1128/aac.35.12.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata M., Otsuki M., Nishino T. In-vitro and in-vivo activities of T-3262, a new pyridone carboxylic acid. J Antimicrob Chemother. 1988 Aug;22(2):143–154. doi: 10.1093/jac/22.2.143. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Otsuki M., Une T., Nishino T. In-vitro and in-vivo activity of DR-3355, an optically active isomer of ofloxacin. J Antimicrob Chemother. 1990 Nov;26(5):659–666. doi: 10.1093/jac/26.5.659. [DOI] [PubMed] [Google Scholar]
- Wise R., Andrews J. M., Edwards L. J. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob Agents Chemother. 1983 Apr;23(4):559–564. doi: 10.1128/aac.23.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfson J. S., Hooper D. C. Bacterial resistance to quinolones: mechanisms and clinical importance. Rev Infect Dis. 1989 Jul-Aug;11 (Suppl 5):S960–S968. doi: 10.1093/clinids/11.supplement_5.s960. [DOI] [PubMed] [Google Scholar]
- Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990 Dec;172(12):6942–6949. doi: 10.1128/jb.172.12.6942-6949.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]