Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jun;40(6):1387–1393. doi: 10.1128/aac.40.6.1387

In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa.

J A Karlowsky 1, M H Saunders 1, G A Harding 1, D J Hoban 1, G G Zhanel 1
PMCID: PMC163336  PMID: 8726006

Abstract

Aminoglycoside adaptive resistance was characterized in one reference strain and four clinical isolates of Pseudomonas aeruginosa. Adaptive resistance was initiated with a 2-h gentamicin or tobramycin exposure at the MIC. Each P. aeruginosa strain demonstrated an adaptive-resistance period of between 8 and 12 h when tested with both aminoglycosides. Aminoglycoside adaptive resistance was shown to correlate with a decrease in [3H] gentamicin accumulation and a small (5%) but significant (P < 0.05) reduction in proton motive force. The mean generation time of P. aeruginosa during peak levels of adaptive resistance (i.e., maximum reductions in aminoglycoside killing) was not significantly different from that of control organisms (P < 0.05). No changes in outer membrane protein or lipopolysaccharide sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles were noted when control, adaptively resistant, and postadaptively resistant cells were compared. Cytoplasmic membrane profiles of adaptively resistant cells, however, demonstrated several band changes when compared with control and postadaptively resistant cells. We conclude that the decrease in aminoglycoside accumulation associated with adaptive resistance in P. aeruginosa may be, in part, a function of reductions in proton motive force and/or cytoplasmic membrane protein changes. However, the importance of these changes requires further investigation.

Full Text

The Full Text of this article is available as a PDF (412.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acar J. F., Goldstein F. W., Lagrange P. Human infections caused by thiamine- or menadione-requiring Staphylococcus aureus. J Clin Microbiol. 1978 Aug;8(2):142–147. doi: 10.1128/jcm.8.2.142-147.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler L. W., Rosen B. P. Properties of Escherichia coli mutants with alterations in Mg2+-adenosine triphosphatase. J Bacteriol. 1976 Oct;128(1):248–256. doi: 10.1128/jb.128.1.248-256.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barclay M. L., Begg E. J., Chambers S. T. Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob Agents Chemother. 1992 Sep;36(9):1951–1957. doi: 10.1128/aac.36.9.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayer A. S., Norman D. C., Kim K. S. Characterization of impermeability variants of Pseudomonas aeruginosa isolated during unsuccessful therapy of experimental endocarditis. Antimicrob Agents Chemother. 1987 Jan;31(1):70–75. doi: 10.1128/aac.31.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bryan L. E., Kwan S. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport. Antimicrob Agents Chemother. 1981 Jun;19(6):958–964. doi: 10.1128/aac.19.6.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryan L. E., Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother. 1983 Jun;23(6):835–845. doi: 10.1128/aac.23.6.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bryan L. E., Nicas T., Holloway B. W., Crowther C. Aminoglycoside-resistant mutation of Pseudomonas aeruginosa defective in cytochrome c552 and nitrate reductase. Antimicrob Agents Chemother. 1980 Jan;17(1):71–79. doi: 10.1128/aac.17.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bryan L. E., O'Hara K., Wong S. Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984 Aug;26(2):250–255. doi: 10.1128/aac.26.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bryan L. E., Van Den Elzen H. M. Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother. 1977 Aug;12(2):163–177. doi: 10.1128/aac.12.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daikos G. L., Jackson G. G., Lolans V. T., Livermore D. M. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis. 1990 Aug;162(2):414–420. doi: 10.1093/infdis/162.2.414. [DOI] [PubMed] [Google Scholar]
  11. Daikos G. L., Lolans V. T., Jackson G. G. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother. 1991 Jan;35(1):117–123. doi: 10.1128/aac.35.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fraimow H. S., Greenman J. B., Leviton I. M., Dougherty T. J., Miller M. H. Tobramycin uptake in Escherichia coli is driven by either electrical potential or ATP. J Bacteriol. 1991 May;173(9):2800–2808. doi: 10.1128/jb.173.9.2800-2808.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukuoka T., Masuda N., Takenouchi T., Sekine N., Iijima M., Ohya S. Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother. 1991 Mar;35(3):529–532. doi: 10.1128/aac.35.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilleland L. B., Gilleland H. E., Gibson J. A., Champlin F. R. Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J Med Microbiol. 1989 May;29(1):41–50. doi: 10.1099/00222615-29-1-41. [DOI] [PubMed] [Google Scholar]
  16. Gould I. M., Milne K., Harvey G., Jason C. Ionic binding, adaptive resistance and post-antibiotic effect of netilmicin and ciprofloxacin. J Antimicrob Chemother. 1991 Jun;27(6):741–748. doi: 10.1093/jac/27.6.741. [DOI] [PubMed] [Google Scholar]
  17. Hancock R. E., Bell A. Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis. 1988 Dec;7(6):713–720. doi: 10.1007/BF01975036. [DOI] [PubMed] [Google Scholar]
  18. Kadurugamuwa J. L., Lam J. S., Beveridge T. J. Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob Agents Chemother. 1993 Apr;37(4):715–721. doi: 10.1128/aac.37.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Karlowsky J. A., Zhanel G. G., Davidson R. J., Hoban D. J. Once-daily aminoglycoside dosing assessed by MIC reversion time with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1994 May;38(5):1165–1168. doi: 10.1128/aac.38.5.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karlowsky J. A., Zhanel G. G., Davidson R. J., Hoban D. J. Postantibiotic effect in Pseudomonas aeruginosa following single and multiple aminoglycoside exposures in vitro. J Antimicrob Chemother. 1994 May;33(5):937–947. doi: 10.1093/jac/33.5.937. [DOI] [PubMed] [Google Scholar]
  21. Korvick J. A., Yu V. L. Antimicrobial agent therapy for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991 Nov;35(11):2167–2172. doi: 10.1128/aac.35.11.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kusser W. C., Ishiguro E. E. Effects of aminoglycosides and spectinomycin on the synthesis and release of lipopolysaccharide by Escherichia coli. Antimicrob Agents Chemother. 1988 Aug;32(8):1247–1250. doi: 10.1128/aac.32.8.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  25. Lightfoot J., Lam J. S. Molecular cloning of genes involved with expression of A-band lipopolysaccharide, an antigenically conserved form, in Pseudomonas aeruginosa. J Bacteriol. 1991 Sep;173(18):5624–5630. doi: 10.1128/jb.173.18.5624-5630.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miller M. H., Edberg S. C., Mandel L. J., Behar C. F., Steigbigel N. H. Gentamicin uptake in wild-type and aminoglycoside-resistant small-colony mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1980 Nov;18(5):722–729. doi: 10.1128/aac.18.5.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  28. Musher D. M., Baughn R. E., Merrell G. L. Selection of small-colony variants of Enterobacteriaceae by in vitro exposure to aminoglycosides: pathogenicity for experimental animals. J Infect Dis. 1979 Aug;140(2):209–214. doi: 10.1093/infdis/140.2.209. [DOI] [PubMed] [Google Scholar]
  29. Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
  30. Parr T. R., Jr, Bayer A. S. Mechanisms of aminoglycoside resistance in variants of Pseudomonas aeruginosa isolated during treatment of experimental endocarditis in rabbits. J Infect Dis. 1988 Nov;158(5):1003–1010. doi: 10.1093/infdis/158.5.1003. [DOI] [PubMed] [Google Scholar]
  31. Pelletier L. L., Jr, Richardson M., Feist M. Virulent gentamicin-induced small colony variants of Staphylococcus aureus. J Lab Clin Med. 1979 Aug;94(2):324–334. [PubMed] [Google Scholar]
  32. Perlin M. H., Lerner S. A. High-level amikacin resistance in Escherichia coli due to phosphorylation and impaired aminoglycoside uptake. Antimicrob Agents Chemother. 1986 Feb;29(2):216–224. doi: 10.1128/aac.29.2.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Price K. E., Kresel P. A., Farchione L. A., Siskin S. B., Karpow S. A. Epidemiological studies of aminoglycoside resistance in the U.S.A. J Antimicrob Chemother. 1981 Jul;8 (Suppl A):89–105. doi: 10.1093/jac/8.suppl_a.89. [DOI] [PubMed] [Google Scholar]
  34. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  35. Taber H. W., Mueller J. P., Miller P. F., Arrow A. S. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev. 1987 Dec;51(4):439–457. doi: 10.1128/mr.51.4.439-457.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weinstein R. A., Nathan C., Gruensfelder R., Kabins S. A. Endemic aminoglycoside resistance in gram-negative bacilli: epidemiology and mechanisms. J Infect Dis. 1980 Mar;141(3):338–345. doi: 10.1093/infdis/141.3.338. [DOI] [PubMed] [Google Scholar]
  37. Young L. S. The clinical challenge of infections due to Pseudomonas aeruginosa. Rev Infect Dis. 1984 Sep-Oct;6 (Suppl 3):S603–S607. doi: 10.1093/clinids/6.supplement_3.s603. [DOI] [PubMed] [Google Scholar]
  38. Zhanel G. G., Karlowsky J. A., Hoban D. J., Davidson R. J. Antimicrobial activity of subinhibitory concentrations of aminoglycosides against Pseudomonas aeruginosa as determined by the killing-curve method and the postantibiotic effect. Chemotherapy. 1991;37(2):114–121. doi: 10.1159/000238842. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES