Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jun;40(6):1403–1407. doi: 10.1128/aac.40.6.1403

Variation in postantibiotic effect of clindamycin against clinical isolates of Staphylococcus aureus and implications for dosing of patients with osteomyelitis.

I B Xue 1, P G Davey 1, G Phillips 1
PMCID: PMC163339  PMID: 8726009

Abstract

Initial measurements of postantibiotic effect (PAE) were made by a standard laboratory method (exposure to 1 mg of clindamycin per liter for 1 h). The range of PAE for 21 strains of Staphylococcus aureus isolated from osteomyelitis patients was 0.4 to 3.9 h, which markedly exceeded the coefficient of variation for the method (6 to 19%). Exposure of S. aureus to three doses of clindamycin at 8-h intervals had no consistent effect on either PAE or MIC. The PAE was dependent on both concentration and duration of exposure to clindamycin: for example, the PAEs for one strain were 1.7 h after exposure to 1 mg/liter for 1 h, 2.4 h after exposure to 4 mg/liter for 1 h, and 5.9 h after exposure to 4 mg/liter for 3 h. Pharmacokinetic simulations showed that the dose required to maintain free serum clindamycin concentrations above the MIC was 300 mg 6 hourly after oral administration (95% confidence interval, 243 to 301 mg) and 1.2 g 6 hourly (95% confidence interval, 305 to 1,145 mg) after intravenous (i.v.) administration. The duration of PAE would have to be at least 2.4 h to allow an increase in the oral dose interval to 8 h or to allow i.v. administration of 300 mg 6 hourly. Additional PAE experiments were performed with the three strains for which PAEs are the shortest after exposure to 1 mg/liter for 1 h (0.4 to 1.2 h). The PAE for these three strains increased markedly to 4.4 to 6.7 h following exposure to 2 mg/liter for 6 h (to mimic the area under the concentration-time curve from 0 to 6 h after a 300-mg dose). These data suggest that oral clindamycin could be administered at 300 mg 8 hourly in the treatment of S. aureus infection, whereas the i.v. dose interval should be 6 h. These suggestions should be confirmed by performing clinical trials.

Full Text

The Full Text of this article is available as a PDF (242.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bundtzen R. W., Gerber A. U., Cohn D. L., Craig W. A. Postantibiotic suppression of bacterial growth. Rev Infect Dis. 1981 Jan-Feb;3(1):28–37. doi: 10.1093/clinids/3.1.28. [DOI] [PubMed] [Google Scholar]
  2. Craig W. A. Post-antibiotic effects in experimental infection models: relationship to in-vitro phenomena and to treatment of infections in man. J Antimicrob Chemother. 1993 May;31 (Suppl 500):149–158. doi: 10.1093/jac/31.suppl_d.149. [DOI] [PubMed] [Google Scholar]
  3. Craig W. Pharmacodynamics of antimicrobial agents as a basis for determining dosage regimens. Eur J Clin Microbiol Infect Dis. 1993;12 (Suppl 1):S6–S8. doi: 10.1007/BF02389870. [DOI] [PubMed] [Google Scholar]
  4. DeHaan R. M., Metzler C. M., Schellenberg D., Vandenbosch W. D. Pharmacokinetic studies of clindamycin phosphate. J Clin Pharmacol. 1973 May-Jun;13(5):190–209. doi: 10.1002/j.1552-4604.1973.tb00208.x. [DOI] [PubMed] [Google Scholar]
  5. Dirschl D. R., Almekinders L. C. Osteomyelitis. Common causes and treatment recommendations. Drugs. 1993 Jan;45(1):29–43. doi: 10.2165/00003495-199345010-00004. [DOI] [PubMed] [Google Scholar]
  6. Fantin B., Ebert S., Leggett J., Vogelman B., Craig W. A. Factors affecting duration of in-vivo postantibiotic effect for aminoglycosides against gram-negative bacilli. J Antimicrob Chemother. 1991 Jun;27(6):829–836. doi: 10.1093/jac/27.6.829. [DOI] [PubMed] [Google Scholar]
  7. Gudmundsson S., Vogelman B., Craig W. A. The in-vivo postantibiotic effect of imipenem and other new antimicrobials. J Antimicrob Chemother. 1986 Dec;18 (Suppl E):67–73. doi: 10.1093/jac/18.supplement_e.67. [DOI] [PubMed] [Google Scholar]
  8. Hanberger H., Nilsson L. E., Maller R., Nilsson M. Pharmacodynamics of beta-lactam antibiotics on gram-negative bacteria: initial killing, morphology and postantibiotic effect. Scand J Infect Dis Suppl. 1990;74:118–123. [PubMed] [Google Scholar]
  9. Jason A. C., MacKenzie F. M., Jason D., Gould I. M. Automatic procedures for measuring post-antibiotic effect and determining random errors. J Antimicrob Chemother. 1994 Nov;34(5):669–678. doi: 10.1093/jac/34.5.669. [DOI] [PubMed] [Google Scholar]
  10. Karlowsky J. A., Zhanel G. G., Davidson R. J., Hoban D. J. Postantibiotic effect in Pseudomonas aeruginosa following single and multiple aminoglycoside exposures in vitro. J Antimicrob Chemother. 1994 May;33(5):937–947. doi: 10.1093/jac/33.5.937. [DOI] [PubMed] [Google Scholar]
  11. Karlowsky J. A., Zhanel G. G., Davidson R. J., Zieroth S. R., Hoban D. J. In vitro postantibiotic effects following multiple exposures of cefotaxime, ciprofloxacin, and gentamicin against Escherichia coli in pooled human cerebrospinal fluid and Mueller-Hinton broth. Antimicrob Agents Chemother. 1993 May;37(5):1154–1157. doi: 10.1128/aac.37.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kikuchi K., Shimizu K. [Post-antibiotic effect and clinical significance]. Nihon Rinsho. 1992 May;50(5):1165–1172. [PubMed] [Google Scholar]
  13. MacKenzie F. M., Gould I. M., Chapman D. G., Jason D. Comparison of methodologies used in assessing the postantibiotic effect. J Antimicrob Chemother. 1994 Aug;34(2):223–230. doi: 10.1093/jac/34.2.223. [DOI] [PubMed] [Google Scholar]
  14. McDonald P. J., Craig W. A., Kunin C. M. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis. 1977 Feb;135(2):217–223. doi: 10.1093/infdis/135.2.217. [DOI] [PubMed] [Google Scholar]
  15. Metzler C. M., DeHaan R., Schellenberg D., Vandenbosch W. D. Clindamycin dose-bioavailability relationships. J Pharm Sci. 1973 Apr;62(4):591–598. doi: 10.1002/jps.2600620410. [DOI] [PubMed] [Google Scholar]
  16. Odenholt I., Holm S. E., Cars O. An in vivo model for evaluation of the postantibiotic effect. Scand J Infect Dis. 1988;20(1):97–103. doi: 10.3109/00365548809117224. [DOI] [PubMed] [Google Scholar]
  17. Parker R. F., Luse S. The Action of Penicillin on Staphylococcus: Further Observations on the Effect of a Short Exposure. J Bacteriol. 1948 Jul;56(1):75–81. doi: 10.1128/jb.56.1.75-81.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parker R. F., Marsh H. C. Action of Penicillin on Staphylococcus. J Bacteriol. 1946 Feb;51(2):181–186. [PMC free article] [PubMed] [Google Scholar]
  19. Pastor A., Pemán J., Cantón E. In-vitro postantibiotic effect of sparfloxacin and ciprofloxacin against Pseudomonas aeruginosa and Enterococcus faecalis. J Antimicrob Chemother. 1994 Nov;34(5):679–685. doi: 10.1093/jac/34.5.679. [DOI] [PubMed] [Google Scholar]
  20. Renneberg J., Walder M. Postantibiotic effects of imipenem, norfloxacin, and amikacin in vitro and in vivo. Antimicrob Agents Chemother. 1989 Oct;33(10):1714–1720. doi: 10.1128/aac.33.10.1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Turnidge J. D. Prediction of antibiotic dosing intervals from in vitro susceptibility, pharmacokinetics and post-antibiotic effect: theoretical considerations. Scand J Infect Dis Suppl. 1990;74:137–141. [PubMed] [Google Scholar]
  22. Täuber M. G., Zak O., Scheld W. M., Hengstler B., Sande M. A. The postantibiotic effect in the treatment of experimental meningitis caused by Streptococcus pneumoniae in rabbits. J Infect Dis. 1984 Apr;149(4):575–583. doi: 10.1093/infdis/149.4.575. [DOI] [PubMed] [Google Scholar]
  23. Vogelman B., Gudmundsson S., Turnidge J., Leggett J., Craig W. A. In vivo postantibiotic effect in a thigh infection in neutropenic mice. J Infect Dis. 1988 Feb;157(2):287–298. doi: 10.1093/infdis/157.2.287. [DOI] [PubMed] [Google Scholar]
  24. Wagner J. G., Novak E., Patel N. C., Chidester C. G., Lummis W. L. Absorption, excretion and half-life of clinimycin in normal adult males. Am J Med Sci. 1968 Jul;256(1):25–37. doi: 10.1097/00000441-196807000-00004. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES