Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jun;40(6):1442–1447. doi: 10.1128/aac.40.6.1442

In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

R Brun 1, Y Bühler 1, U Sandmeier 1, R Kaminsky 1, C J Bacchi 1, D Rattendi 1, S Lane 1, S L Croft 1, D Snowdon 1, V Yardley 1, G Caravatti 1, J Frei 1, J Stanek 1, H Mett 1
PMCID: PMC163347  PMID: 8726017

Abstract

A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro.

Full Text

The Full Text of this article is available as a PDF (292.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacchi C. J., Brun R., Croft S. L., Alicea K., Bühler Y. In vivo trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors. Antimicrob Agents Chemother. 1996 Jun;40(6):1448–1453. doi: 10.1128/aac.40.6.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bacchi C. J., Garofalo J., Ciminelli M., Rattendi D., Goldberg B., McCann P. P., Yarlett N. Resistance to DL-alpha-difluoromethylornithine by clinical isolates of Trypanosoma brucei rhodesiense. Role of S-adenosylmethionine. Biochem Pharmacol. 1993 Aug 3;46(3):471–481. doi: 10.1016/0006-2952(93)90524-z. [DOI] [PubMed] [Google Scholar]
  3. Bacchi C. J., Nathan H. C., Livingston T., Valladares G., Saric M., Sayer P. D., Njogu A. R., Clarkson A. B., Jr Differential susceptibility to DL-alpha-difluoromethylornithine in clinical isolates of Trypanosoma brucei rhodesiense. Antimicrob Agents Chemother. 1990 Jun;34(6):1183–1188. doi: 10.1128/aac.34.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bales J. D., Jr, Harrison S. M., Mbwabi D. L., Schecter P. J. Treatment of arsenical refractory Rhodesian sleeping sickness in Kenya. Ann Trop Med Parasitol. 1989 Aug;83 (Suppl 1):111–114. doi: 10.1080/00034983.1989.11812414. [DOI] [PubMed] [Google Scholar]
  5. Baltz T., Baltz D., Giroud C., Crockett J. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985 May;4(5):1273–1277. doi: 10.1002/j.1460-2075.1985.tb03772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang K. P., Steiger R. F., Dave C., Cheng Y. C. Effects of methylglyoxal bis(ganylhydrazone) on trypanosomatid flagellates: inhibition of growth and nucleoside incorporation in Trypanosoma brucei. J Protozool. 1978 Feb;25(1):145–149. doi: 10.1111/j.1550-7408.1978.tb03887.x. [DOI] [PubMed] [Google Scholar]
  7. Cohen S. S. Comparative biochemistry and drug design for infectious disease. Science. 1979 Sep 7;205(4410):964–971. doi: 10.1126/science.382357. [DOI] [PubMed] [Google Scholar]
  8. Hirumi H., Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989 Dec;75(6):985–989. [PubMed] [Google Scholar]
  9. Kaminsky R., Chuma F., Wasike R. P. Time-dose response of Trypanosoma congolense bloodstream forms to diminazene and isometamidium. Vet Parasitol. 1994 Apr;52(3-4):235–242. doi: 10.1016/0304-4017(94)90115-5. [DOI] [PubMed] [Google Scholar]
  10. Kaminsky R., Chuma F., Zweygarth E. Trypanosoma brucei brucei: expression of drug resistance in vitro. Exp Parasitol. 1989 Oct;69(3):281–289. doi: 10.1016/0014-4894(89)90074-x. [DOI] [PubMed] [Google Scholar]
  11. Kaminsky R., Mamman M., Chuma F., Zweygarth E. Time-dose-response of Trypanosoma brucei brucei to diminazene aceturate (Berenil) and in vitro simulation of drug-concentration-time profiles in cattle plasma. Acta Trop. 1993 Jun;54(1):19–30. doi: 10.1016/0001-706x(93)90065-j. [DOI] [PubMed] [Google Scholar]
  12. Kaminsky R., Zweygarth E. Feeder layer-free in vitro assay for screening antitrypanosomal compounds against Trypanosoma brucei brucei and T. b. evansi. Antimicrob Agents Chemother. 1989 Jun;33(6):881–885. doi: 10.1128/aac.33.6.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kolber M. A., Quinones R. R., Gress R. E., Henkart P. A. Measurement of cytotoxicity by target cell release and retention of the fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF). J Immunol Methods. 1988 Apr 6;108(1-2):255–264. doi: 10.1016/0022-1759(88)90427-9. [DOI] [PubMed] [Google Scholar]
  14. Mehlitz D., Brinkmann U., Haller L. Epidemiological studies on the animal reservoir of gambiense sleeping sickness. Part I. Review of literature and description of the study areas. Tropenmed Parasitol. 1981 Sep;32(3):129–133. [PubMed] [Google Scholar]
  15. Neal R. A., Croft S. L. An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. J Antimicrob Chemother. 1984 Nov;14(5):463–475. doi: 10.1093/jac/14.5.463. [DOI] [PubMed] [Google Scholar]
  16. Obexer W., Schmid C., Brun R. A novel in vitro screening assay for trypanocidal activity using the fluorescent dye BCECF-AM. Trop Med Parasitol. 1995 Mar;46(1):45–48. [PubMed] [Google Scholar]
  17. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  18. Pleshkewych A., Kramer D. L., Kelly E., Porter C. W. Independence of drug action on mitochondria and polyamines in L1210 leukemia cells treated with methylglyoxal-bis(guanylhydrazone). Cancer Res. 1980 Dec;40(12):4533–4540. [PubMed] [Google Scholar]
  19. Porter C. W., Sufrin J. R. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res. 1986 Jul-Aug;6(4):525–542. [PubMed] [Google Scholar]
  20. Regenass U., Caravatti G., Mett H., Stanek J., Schneider P., Müller M., Matter A., Vertino P., Porter C. W. New S-adenosylmethionine decarboxylase inhibitors with potent antitumor activity. Cancer Res. 1992 Sep 1;52(17):4712–4718. [PubMed] [Google Scholar]
  21. Regenass U., Mett H., Stanek J., Mueller M., Kramer D., Porter C. W. CGP 48664, a new S-adenosylmethionine decarboxylase inhibitor with broad spectrum antiproliferative and antitumor activity. Cancer Res. 1994 Jun 15;54(12):3210–3217. [PubMed] [Google Scholar]
  22. Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., Boyd M. R. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990 Jul 4;82(13):1107–1112. doi: 10.1093/jnci/82.13.1107. [DOI] [PubMed] [Google Scholar]
  23. Stanek J., Caravatti G., Capraro H. G., Furet P., Mett H., Schneider P., Regenass U. S-adenosylmethionine decarboxylase inhibitors: new aryl and heteroaryl analogues of methylglyoxal bis(guanylhydrazone). J Med Chem. 1993 Jan 8;36(1):46–54. doi: 10.1021/jm00053a007. [DOI] [PubMed] [Google Scholar]
  24. Van Nieuwenhove S. Advances in sleeping sickness therapy. Ann Soc Belg Med Trop. 1992;72 (Suppl 1):39–51. [PubMed] [Google Scholar]
  25. Warrell R. P., Jr, Burchenal J. H. Methylglyoxal-bis(guanylhydrazone) (Methyl-GAG): current status and future prospects. J Clin Oncol. 1983 Jan;1(1):52–65. doi: 10.1200/JCO.1983.1.1.52. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES