Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jun;40(6):1467–1471. doi: 10.1128/aac.40.6.1467

Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro.

A R Bender 1, H von Briesen 1, J Kreuter 1, I B Duncan 1, H Rübsamen-Waigmann 1
PMCID: PMC163350  PMID: 8726020

Abstract

Polyhexylcyanoacrylate nanoparticles loaded with either the human immunodeficiency virus (HIV) protease inhibitor saquinavir (Ro 31-8959) or the nucleoside analog zalcitabine (2',3'-dideoxycytidine) were prepared by emulsion polymerization and tested for antiviral activity in primary human monocytes/macrophages in vitro. Both nanoparticulate formulations led to a dose-dependent reduction of HIV type 1 antigen production. While nanoparticle-bound zalcitabine showed no superiority to an aqueous solution of the drug, a significantly higher efficacy was observed with saquinavir-loaded nanoparticles. In acutely infected cells, an aqueous solution of saquinavir showed little antiviral activity at concentrations below 10 nM, whereas the nanoparticulate formulation exhibited a good antiviral effect at a concentration of 1 nM and a still-significant antigen reduction at 0.1 nM (50% inhibitory concentrations = 4.23 nM for the free drug and 0.39 nM for the nanoparticle-bound drug). At a concentration of 100 nM, saquinavir was completely inactive in chronically HIV-infected macrophages, but when bound to nanoparticles it caused a 35% decrease in antigen production. Using nanoparticles as a drug carrier system could improve the delivery of antiviral agents to the mononuclear phagocyte system in vivo, overcoming pharmacokinetic problems and enhancing the activities of drugs for the treatment of HIV infection and AIDS.

Full Text

The Full Text of this article is available as a PDF (251.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender A., Schfer V., Steffan A. M., Royer C., Kreuter J., Rübsamen-Waigmann H., von Briesen H. Inhibition of HIV in vitro by antiviral drug-targeting using nanoparticles. Res Virol. 1994 May-Aug;145(3-4):215–220. doi: 10.1016/s0923-2516(07)80025-2. [DOI] [PubMed] [Google Scholar]
  2. Clerici M., Shearer G. M. The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today. 1994 Dec;15(12):575–581. doi: 10.1016/0167-5699(94)90220-8. [DOI] [PubMed] [Google Scholar]
  3. Cooney D. A., Dalal M., Mitsuya H., McMahon J. B., Nadkarni M., Balzarini J., Broder S., Johns D. G. Initial studies on the cellular pharmacology of 2',3-dideoxycytidine, an inhibitor of HTLV-III infectivity. Biochem Pharmacol. 1986 Jul 1;35(13):2065–2068. doi: 10.1016/0006-2952(86)90571-x. [DOI] [PubMed] [Google Scholar]
  4. Craig J. C., Duncan I. B., Hockley D., Grief C., Roberts N. A., Mills J. S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antiviral Res. 1991 Dec;16(4):295–305. doi: 10.1016/0166-3542(91)90045-s. [DOI] [PubMed] [Google Scholar]
  5. De Clercq E. HIV inhibitors targeted at the reverse transcriptase. AIDS Res Hum Retroviruses. 1992 Feb;8(2):119–134. doi: 10.1089/aid.1992.8.119. [DOI] [PubMed] [Google Scholar]
  6. Domin B. A., Mahony W. B., Zimmerman T. P. Membrane permeation mechanisms of 2',3'-dideoxynucleosides. Biochem Pharmacol. 1993 Aug 17;46(4):725–729. doi: 10.1016/0006-2952(93)90560-j. [DOI] [PubMed] [Google Scholar]
  7. Esser R., von Briesen H., Brugger M., Ceska M., Glienke W., Müller S., Rehm A., Rübsamen-Waigmann H., Andreesen R. Secretory repertoire of HIV-infected human monocytes/macrophages. Pathobiology. 1991;59(4):219–222. doi: 10.1159/000163649. [DOI] [PubMed] [Google Scholar]
  8. Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986 Jul 11;233(4760):215–219. doi: 10.1126/science.3014648. [DOI] [PubMed] [Google Scholar]
  9. Gendelman H. E., Lipton S. A., Tardieu M., Bukrinsky M. I., Nottet H. S. The neuropathogenesis of HIV-1 infection. J Leukoc Biol. 1994 Sep;56(3):389–398. doi: 10.1002/jlb.56.3.389. [DOI] [PubMed] [Google Scholar]
  10. Hao Z., Cooney D. A., Hartman N. R., Perno C. F., Fridland A., DeVico A. L., Sarngadharan M. G., Broder S., Johns D. G. Factors determining the activity of 2',3'-dideoxynucleosides in suppressing human immunodeficiency virus in vitro. Mol Pharmacol. 1988 Oct;34(4):431–435. [PubMed] [Google Scholar]
  11. Harvie P., Désormeaux A., Gagné N., Tremblay M., Poulin L., Beauchamp D., Bergeron M. G. Lymphoid tissues targeting of liposome-encapsulated 2',3'-dideoxyinosine. AIDS. 1995 Jul;9(7):701–707. doi: 10.1097/00002030-199507000-00006. [DOI] [PubMed] [Google Scholar]
  12. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  13. Johnston M. I., Hoth D. F. Present status and future prospects for HIV therapies. Science. 1993 May 28;260(5112):1286–1293. doi: 10.1126/science.7684163. [DOI] [PubMed] [Google Scholar]
  14. Khoo S. H., Wilkins E. G. Controversies in anti-retroviral therapy of adults. J Antimicrob Chemother. 1995 Feb;35(2):245–262. doi: 10.1093/jac/35.2.245. [DOI] [PubMed] [Google Scholar]
  15. Kitchen V. S., Skinner C., Ariyoshi K., Lane E. A., Duncan I. B., Burckhardt J., Burger H. U., Bragman K., Pinching A. J., Weber J. N. Safety and activity of saquinavir in HIV infection. Lancet. 1995 Apr 15;345(8955):952–955. doi: 10.1016/s0140-6736(95)90699-1. [DOI] [PubMed] [Google Scholar]
  16. Kreuter J., Alyautdin R. N., Kharkevich D. A., Ivanov A. A. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995 Mar 13;674(1):171–174. doi: 10.1016/0006-8993(95)00023-j. [DOI] [PubMed] [Google Scholar]
  17. Kreuter J., Täuber U., Illi V. Distribution and elimination of poly(methyl-2-14C-methacrylate) nanoparticle radioactivity after injection in rats and mice. J Pharm Sci. 1979 Nov;68(11):1443–1447. doi: 10.1002/jps.2600681129. [DOI] [PubMed] [Google Scholar]
  18. Kühnel H., von Briesen H., Dietrich U., Adamski M., Mix D., Biesert L., Kreutz R., Immelmann A., Henco K., Meichsner C. Molecular cloning of two west African human immunodeficiency virus type 2 isolates that replicate well in macrophages: a Gambian isolate, from a patient with neurologic acquired immunodeficiency syndrome, and a highly divergent Ghanian isolate. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2383–2387. doi: 10.1073/pnas.86.7.2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Larder B. A., Darby G., Richman D. D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989 Mar 31;243(4899):1731–1734. doi: 10.1126/science.2467383. [DOI] [PubMed] [Google Scholar]
  20. Levy J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993 Mar;57(1):183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin J. A. Recent advances in the design of HIV proteinase inhibitors. Antiviral Res. 1992 Apr;17(4):265–278. doi: 10.1016/0166-3542(92)90022-w. [DOI] [PubMed] [Google Scholar]
  22. Matsuyama T., Kobayashi N., Yamamoto N. Cytokines and HIV infection: is AIDS a tumor necrosis factor disease? AIDS. 1991 Dec;5(12):1405–1417. doi: 10.1097/00002030-199112000-00001. [DOI] [PubMed] [Google Scholar]
  23. McGann K. A., Collman R., Kolson D. L., Gonzalez-Scarano F., Coukos G., Coutifaris C., Strauss J. F., Nathanson N. Human immunodeficiency virus type 1 causes productive infection of macrophages in primary placental cell cultures. J Infect Dis. 1994 Apr;169(4):746–753. doi: 10.1093/infdis/169.4.746. [DOI] [PubMed] [Google Scholar]
  24. Milman G., Sharma O. Mechanisms of HIV/SIV mucosal transmission. AIDS Res Hum Retroviruses. 1994 Oct;10(10):1305–1312. doi: 10.1089/aid.1994.10.1305. [DOI] [PubMed] [Google Scholar]
  25. Mitsuya H., Yarchoan R., Broder S. Molecular targets for AIDS therapy. Science. 1990 Sep 28;249(4976):1533–1544. doi: 10.1126/science.1699273. [DOI] [PubMed] [Google Scholar]
  26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  27. Nicholson J. K., Cross G. D., Callaway C. S., McDougal J. S. In vitro infection of human monocytes with human T lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). J Immunol. 1986 Jul 1;137(1):323–329. [PubMed] [Google Scholar]
  28. Perno C. F., Aquaro S., Rosenwirth B., Balestra E., Peichl P., Billich A., Villani N., Caliò R. In vitro activity of inhibitors of late stages of the replication of HIV in chronically infected macrophages. J Leukoc Biol. 1994 Sep;56(3):381–386. doi: 10.1002/jlb.56.3.381. [DOI] [PubMed] [Google Scholar]
  29. Perno C. F., Bergamini A., Pesce C. D., Milanese G., Capozzi M., Aquaro S., Thaisrivongs S., Tarpley W. G., Zon G., D'Agostini C. Inhibition of the protease of human immunodeficiency virus blocks replication and infectivity of the virus in chronically infected macrophages. J Infect Dis. 1993 Nov;168(5):1148–1156. doi: 10.1093/infdis/168.5.1148. [DOI] [PubMed] [Google Scholar]
  30. Perno C. F., Yarchoan R., Balzarini J., Bergamini A., Milanese G., Pauwels R., De Clercq E., Rocchi G., Calio R. Different pattern of activity of inhibitors of the human immunodeficiency virus in lymphocytes and monocyte/macrophages. Antiviral Res. 1992 Apr;17(4):289–304. doi: 10.1016/0166-3542(92)90024-y. [DOI] [PubMed] [Google Scholar]
  31. Phillips N. C., Tsoukas C. Liposomal encapsulation of azidothymidine results in decreased hematopoietic toxicity and enhanced activity against murine acquired immunodeficiency syndrome. Blood. 1992 Mar 1;79(5):1137–1143. [PubMed] [Google Scholar]
  32. Roberts N. A., Martin J. A., Kinchington D., Broadhurst A. V., Craig J. C., Duncan I. B., Galpin S. A., Handa B. K., Kay J., Kröhn A. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990 Apr 20;248(4953):358–361. doi: 10.1126/science.2183354. [DOI] [PubMed] [Google Scholar]
  33. Robins T., Plattner J. HIV protease inhibitors: their anti-HIV activity and potential role in treatment. J Acquir Immune Defic Syndr. 1993 Feb;6(2):162–170. [PubMed] [Google Scholar]
  34. Rossi J. J., Elkins D., Zaia J. A., Sullivan S. Ribozymes as anti-HIV-1 therapeutic agents: principles, applications, and problems. AIDS Res Hum Retroviruses. 1992 Feb;8(2):183–189. doi: 10.1089/aid.1992.8.183. [DOI] [PubMed] [Google Scholar]
  35. Rübsamen-Waigmann H., Schröder B., Biesert L., Bauermeister C. D., von Briesen H., Suhartono H., Zimmermann F., Brede H. D., Regeniter A., Gerte S. Markers for HIV-disease progression in untreated patients and patients receiving AZT: evaluation of viral activity, AZT resistance, serum cholesterol, beta 2-microglobulin, CD4+ cell counts, and HIV antigen. Infection. 1991;19 (Suppl 2):S77–S82. doi: 10.1007/BF01644472. [DOI] [PubMed] [Google Scholar]
  36. Rübsamen-Waigmann H., Willems W. R., Bertram U., von Briesen H. Reversal of HIV-phenotype to fulminant replication on macrophages in perinatal transmission. Lancet. 1989 Nov 11;2(8672):1155–1156. doi: 10.1016/s0140-6736(89)91518-3. [DOI] [PubMed] [Google Scholar]
  37. Schinazi R. F., Mead J. R., Feorino P. M. Insights into HIV chemotherapy. AIDS Res Hum Retroviruses. 1992 Jun;8(6):963–990. doi: 10.1089/aid.1992.8.963. [DOI] [PubMed] [Google Scholar]
  38. Schäfer V., Kreuter J., Rübsamen-Waigmann H., Gerte S., von Briesen H. Influence of HIV-infection on the phagocytic activity of monocytes/macrophages and granulocytes. Clin Diagn Virol. 1994 Jan;1(5-6):279–287. doi: 10.1016/0928-0197(94)90058-2. [DOI] [PubMed] [Google Scholar]
  39. Schäfer V., von Briesen H., Andreesen R., Steffan A. M., Royer C., Tröster S., Kreuter J., Rübsamen-Waigmann H. Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res. 1992 Apr;9(4):541–546. doi: 10.1023/a:1015852732512. [DOI] [PubMed] [Google Scholar]
  40. Schäfer V., von Briesen H., Rübsamen-Waigmann H., Steffan A. M., Royer C., Kreuter J. Phagocytosis and degradation of human serum albumin microspheres and nanoparticles in human macrophages. J Microencapsul. 1994 May-Jun;11(3):261–269. doi: 10.3109/02652049409040455. [DOI] [PubMed] [Google Scholar]
  41. Vella S. HIV therapy advances. Update on a proteinase inhibitor. AIDS. 1994 Sep;8 (Suppl 3):S25–S29. doi: 10.1097/00002030-199409001-00006. [DOI] [PubMed] [Google Scholar]
  42. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  43. Weiss R. A. How does HIV cause AIDS? Science. 1993 May 28;260(5112):1273–1279. doi: 10.1126/science.8493571. [DOI] [PubMed] [Google Scholar]
  44. Winslow D. L., Otto M. J. HIV protease inhibitors. AIDS. 1995;9 (Suppl A):S183–S192. [PubMed] [Google Scholar]
  45. Yarchoan R., Pluda J. M., Perno C. F., Mitsuya H., Broder S. Anti-retroviral therapy of human immunodeficiency virus infection: current strategies and challenges for the future. Blood. 1991 Aug 15;78(4):859–884. [PubMed] [Google Scholar]
  46. van't Wout A. B., Kootstra N. A., Mulder-Kampinga G. A., Albrecht-van Lent N., Scherpbier H. J., Veenstra J., Boer K., Coutinho R. A., Miedema F., Schuitemaker H. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest. 1994 Nov;94(5):2060–2067. doi: 10.1172/JCI117560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. von Briesen H., Andreesen R., Esser R., Brugger W., Meichsner C., Becker K., Rübsamen-Waigmann H. Infection of monocytes/macrophages by HIV in vitro. Res Virol. 1990 Mar-Apr;141(2):225–231. doi: 10.1016/0923-2516(90)90025-e. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES