Abstract
Inhibitory and bactericidal activities of KRM-1648 were determined against Mycobacterium tuberculosis and M. avium residing in human monocyte-derived macrophages and extracellular M. tuberculosis and M. avium. MICs and MBCs of KRM-1648 against intracellular and extracellular bacteria were substantially lower than those of rifampin. The MICs and MBCs of either drug against the intracellular bacteria were only twofold lower than or equal to the values found for extracellular bacteria. The prolonged effect of KRM-1648 found in this study is probably associated with high ratios of intracellular accumulation, which were 50- to 100-fold higher than that found for rifampin. Further studies on intracellular distribution of KRM-1648 and on the sites of actual interaction between the drug and bacteria residing in macrophages are necessary, as well as evaluation of combined effects of KRM-1648 with other drugs in long-term macrophage culture experiments.
Full Text
The Full Text of this article is available as a PDF (211.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dhillon J., Mitchison D. A. Activity in vitro of rifabutin, FCE 22807, rifapentine, and rifampin against Mycobacterium microti and M. tuberculosis and their penetration into mouse peritoneal macrophages. Am Rev Respir Dis. 1992 Jan;145(1):212–214. doi: 10.1164/ajrccm/145.1.212. [DOI] [PubMed] [Google Scholar]
- Dickinson J. M., Mitchison D. A. In vitro observations on the suitability of new rifamycins for the intermittent chemotherapy of tuberculosis. Tubercle. 1987 Sep;68(3):183–193. doi: 10.1016/0041-3879(87)90054-7. [DOI] [PubMed] [Google Scholar]
- Dickinson J. M., Mitchison D. A. In vitro properties of rifapentine (MDL473) relevant to its use in intermittent chemotherapy of tuberculosis. Tubercle. 1987 Jun;68(2):113–118. doi: 10.1016/0041-3879(87)90026-2. [DOI] [PubMed] [Google Scholar]
- Heifets L. B., Iseman M. D., Lindholm-Levy P. J., Kanes W. Determination of ansamycin MICs for Mycobacterium avium complex in liquid medium by radiometric and conventional methods. Antimicrob Agents Chemother. 1985 Oct;28(4):570–575. doi: 10.1128/aac.28.4.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heifets L. B., Lindholm-Levy P. J., Flory M. A. Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis. Am Rev Respir Dis. 1990 Mar;141(3):626–630. doi: 10.1164/ajrccm/141.3.626. [DOI] [PubMed] [Google Scholar]
- Hirata T., Saito H., Tomioka H., Sato K., Jidoi J., Hosoe K., Hidaka T. In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995 Oct;39(10):2295–2303. doi: 10.1128/aac.39.10.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemens S. P., Cynamon M. H. In vivo activities of newer rifamycin analogs against Mycobacterium avium infection. Antimicrob Agents Chemother. 1991 Oct;35(10):2026–2030. doi: 10.1128/aac.35.10.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luna-Herrera J., Reddy M. V., Gangadharam P. R. In vitro activity of the benzoxazinorifamycin KRM-1648 against drug-susceptible and multidrug-resistant tubercle bacilli. Antimicrob Agents Chemother. 1995 Feb;39(2):440–444. doi: 10.1128/aac.39.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mor N., Simon B., Heifets L. Methods for determining concentrations of antimicrobial agents in human monocytes. J Chemother. 1995 Jun;7(3):207–209. doi: 10.1179/joc.1995.7.3.207. [DOI] [PubMed] [Google Scholar]
- Mor N., Vanderkolk J., Heifets L. Inhibitory and bactericidal activities of levofloxacin against Mycobacterium tuberculosis in vitro and in human macrophages. Antimicrob Agents Chemother. 1994 May;38(5):1161–1164. doi: 10.1128/aac.38.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mor N., Vanderkolk J., Mezo N., Heifets L. Effects of clarithromycin and rifabutin alone and in combination on intracellular and extracellular replication of Mycobacterium avium. Antimicrob Agents Chemother. 1994 Dec;38(12):2738–2742. doi: 10.1128/aac.38.12.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nibbering P. H., Zomerdijk T. P., Corsèl-Van Tilburg A. J., Van Furth R. Mean cell volume of human blood leucocytes and resident and activated murine macrophages. J Immunol Methods. 1990 May 8;129(1):143–145. doi: 10.1016/0022-1759(90)90432-u. [DOI] [PubMed] [Google Scholar]
- Saito H., Tomioka H., Sato K., Kawahara S., Hidaka T., Dekio S. Therapeutic effect of KRM-1648 with various antimicrobials against Mycobacterium avium complex infection in mice. Tuber Lung Dis. 1995 Feb;76(1):51–58. doi: 10.1016/0962-8479(95)90580-4. [DOI] [PubMed] [Google Scholar]
- Tomioka H., Saito H., Fujii K., Sato K., Hidaka T. In vitro antimicrobial activity of benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex, determined by the radiometric method. Antimicrob Agents Chemother. 1993 Jan;37(1):67–70. doi: 10.1128/aac.37.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomioka H., Saito H., Sato K., Yamane T., Yamashita K., Hosoe K., Fujii K., Hidaka T. Chemotherapeutic efficacy of a newly synthesized benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex infection induced in mice. Antimicrob Agents Chemother. 1992 Feb;36(2):387–393. doi: 10.1128/aac.36.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]