Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jul;40(7):1610–1616. doi: 10.1128/aac.40.7.1610

In vitro activities of levofloxacin used alone and in combination with first- and second-line antituberculous drugs against Mycobacterium tuberculosis.

N Rastogi 1, K S Goh 1, A Bryskier 1, A Devallois 1
PMCID: PMC163382  PMID: 8807049

Abstract

By using the radiometric BACTEC 460-TB methodology, the inhibitory and bactericidal activity of the optically active L-isomer of ofloxacin (levofloxacin) was compared with those of the D-isomer and the commercially available mixture containing equal amounts of DL-isomers (ofloxacin) against the Mycobacterium tuberculosis complex (type strain H37Rv, a panel of drug-susceptible and -resistant clinical isolates including multidrug-resistant isolates of M. tuberculosis, as well as M. africanum, M. bovis, and M. bovis BCG). Levofloxacin MICs (range 0.50 to 0.75 microgram/ml) were about 1 dilution lower than those of ofloxacin (MIC range, 0.75 to 1.00 microgram/ml) and 5 to 6 dilutions lower than those of the D-isomer (MIC range, 32 to 60 micrograms/ml). The MICs of levofloxacin, ofloxacin, and D-ofloxacin at which 90% of the strains are inhibited were 0.50, 1.00, and 64 micrograms/ml, respectively. The multidrug-resistant M. tuberculosis strains resistant to first-line drugs were as susceptible to quinolones as the wild-type drug-susceptible isolates. Levofloxacin at 0.5 microgram/ml showed bactericidal activity comparable to the activities of 1.0 microgram of ofloxacin per ml and 64 micrograms of D-ofloxacin per ml, with MBCs within the range of 0.5 to 2.0 micrograms/ml, compared with MBCs of 0.75 to 4.0 micrograms of ofloxacin per ml for M. tuberculosis, M. africanum, M. bovis BCG. Combination testing of sub-MICs of levolofoxacin with other first-line (isoniazid, rifampin, and ethambutol) and second-line (amikacin and clofazimine) antituberculous drugs was evaluated with various two-, three-, and four-drug combinations; enhanced drug activity was observed in 8 of 25, 12 of 20, and 8 of 15 tests, respectively, indicating that levofloxacin acts in synergy with other antituberculous drugs.

Full Text

The Full Text of this article is available as a PDF (379.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alangaden G. J., Manavathu E. K., Vakulenko S. B., Zvonok N. M., Lerner S. A. Characterization of fluoroquinolone-resistant mutant strains of Mycobacterium tuberculosis selected in the laboratory and isolated from patients. Antimicrob Agents Chemother. 1995 Aug;39(8):1700–1703. doi: 10.1128/aac.39.8.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bazile S., Moreau N., Bouzard D., Essiz M. Relationships among antibacterial activity, inhibition of DNA gyrase, and intracellular accumulation of 11 fluoroquinolones. Antimicrob Agents Chemother. 1992 Dec;36(12):2622–2627. doi: 10.1128/aac.36.12.2622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloch A. B., Cauthen G. M., Onorato I. M., Dansbury K. G., Kelly G. D., Driver C. R., Snider D. E., Jr Nationwide survey of drug-resistant tuberculosis in the United States. JAMA. 1994 Mar 2;271(9):665–671. [PubMed] [Google Scholar]
  4. Cavalieri S. J., Biehle J. R., Sanders W. E., Jr Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995 Jul;39(7):1542–1545. doi: 10.1128/aac.39.7.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dhople A. M., Ibanez M. A. In vitro activity of levofloxacin, singly and in combination with rifamycin analogs, against Mycobacterium leprae. Antimicrob Agents Chemother. 1995 Sep;39(9):2116–2119. doi: 10.1128/aac.39.9.2116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frieden T. R., Sterling T., Pablos-Mendez A., Kilburn J. O., Cauthen G. M., Dooley S. W. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993 Feb 25;328(8):521–526. doi: 10.1056/NEJM199302253280801. [DOI] [PubMed] [Google Scholar]
  7. Fu K. P., Lafredo S. C., Foleno B., Isaacson D. M., Barrett J. F., Tobia A. J., Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):860–866. doi: 10.1128/aac.36.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodwin S. D., Gallis H. A., Chow A. T., Wong F. A., Flor S. C., Bartlett J. A. Pharmacokinetics and safety of levofloxacin in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother. 1994 Apr;38(4):799–804. doi: 10.1128/aac.38.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hayakawa I., Atarashi S., Yokohama S., Imamura M., Sakano K., Furukawa M. Synthesis and antibacterial activities of optically active ofloxacin. Antimicrob Agents Chemother. 1986 Jan;29(1):163–164. doi: 10.1128/aac.29.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heifets L. B., Lindholm-Levy P. J. Bacteriostatic and bactericidal activity of ciprofloxacin and ofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex. Tubercle. 1987 Dec;68(4):267–276. doi: 10.1016/0041-3879(87)90067-5. [DOI] [PubMed] [Google Scholar]
  11. Imamura M., Shibamura S., Hayakawa I., Osada Y. Inhibition of DNA gyrase by optically active ofloxacin. Antimicrob Agents Chemother. 1987 Feb;31(2):325–327. doi: 10.1128/aac.31.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iseman M. D. Treatment of multidrug-resistant tuberculosis. N Engl J Med. 1993 Sep 9;329(11):784–791. doi: 10.1056/NEJM199309093291108. [DOI] [PubMed] [Google Scholar]
  13. JI B., Lounis N., Truffot-Pernot C., Grosset J. In vitro and in vivo activities of levofloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995 Jun;39(6):1341–1344. doi: 10.1128/aac.39.6.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ji B., Perani E. G., Petinom C., N'Deli L., Grosset J. H. Clinical trial of ofloxacin alone and in combination with dapsone plus clofazimine for treatment of lepromatous leprosy. Antimicrob Agents Chemother. 1994 Apr;38(4):662–667. doi: 10.1128/aac.38.4.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klemens S. P., Sharpe C. A., Rogge M. C., Cynamon M. H. Activity of levofloxacin in a murine model of tuberculosis. Antimicrob Agents Chemother. 1994 Jul;38(7):1476–1479. doi: 10.1128/aac.38.7.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lalande V., Truffot-Pernot C., Paccaly-Moulin A., Grosset J., Ji B. Powerful bactericidal activity of sparfloxacin (AT-4140) against Mycobacterium tuberculosis in mice. Antimicrob Agents Chemother. 1993 Mar;37(3):407–413. doi: 10.1128/aac.37.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee C. N., Heifets L. B. Determination of minimal inhibitory concentrations of antituberculosis drugs by radiometric and conventional methods. Am Rev Respir Dis. 1987 Aug;136(2):349–352. doi: 10.1164/ajrccm/136.2.349. [DOI] [PubMed] [Google Scholar]
  18. Mor N., Vanderkolk J., Heifets L. Inhibitory and bactericidal activities of levofloxacin against Mycobacterium tuberculosis in vitro and in human macrophages. Antimicrob Agents Chemother. 1994 May;38(5):1161–1164. doi: 10.1128/aac.38.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neu H. C., Chin N. X. In vitro activity of S-ofloxacin. Antimicrob Agents Chemother. 1989 Jul;33(7):1105–1107. doi: 10.1128/aac.33.7.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pascual A., Garcia I., Perea E. J. Fluorometric measurement of ofloxacin uptake by human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1989 May;33(5):653–656. doi: 10.1128/aac.33.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pascual A., Garcia I., Perea E. J. Uptake and intracellular activity of an optically active ofloxacin isomer in human neutrophils and tissue culture cells. Antimicrob Agents Chemother. 1990 Feb;34(2):277–280. doi: 10.1128/aac.34.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rastogi N., Blom-Potar M. C. Intracellular bactericidal activity of ciprofloxacin and ofloxacin against Mycobacterium tuberculosis H37Rv multiplying in the J-774 macrophage cell line. Zentralbl Bakteriol. 1990 Jun;273(2):195–199. doi: 10.1016/s0934-8840(11)80249-5. [DOI] [PubMed] [Google Scholar]
  23. Rastogi N. Emergence of multiple-drug-resistant tuberculosis: fundamental and applied research aspects, global issues and current strategies. Res Microbiol. 1993 Feb;144(2):103–103. doi: 10.1016/0923-2508(93)90022-t. [DOI] [PubMed] [Google Scholar]
  24. Rastogi N., Goh K. S., David H. L. Drug susceptibility testing in tuberculosis: a comparison of the proportion methods using Lowenstein-Jensen, Middlebrook 7H10 and 7H11 agar media and a radiometric method. Res Microbiol. 1989 Jul-Aug;140(6):405–417. doi: 10.1016/0923-2508(89)90016-8. [DOI] [PubMed] [Google Scholar]
  25. Rastogi N., Goh K. S. In vitro activity of the new difluorinated quinolone sparfloxacin (AT-4140) against Mycobacterium tuberculosis compared with activities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother. 1991 Sep;35(9):1933–1936. doi: 10.1128/aac.35.9.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rastogi N., Goh K. S., Ruiz P., Casal M. In vitro activity of roxithromycin against the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother. 1995 May;39(5):1162–1165. doi: 10.1128/aac.39.5.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rastogi N., Labrousse V., Bryskier A. Intracellular activities of roxithromycin used alone and in association with other drugs against Mycobacterium avium complex in human macrophages. Antimicrob Agents Chemother. 1995 Apr;39(4):976–978. doi: 10.1128/aac.39.4.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rastogi N., Labrousse V. Extracellular and intracellular activities of clarithromycin used alone and in association with ethambutol and rifampin against Mycobacterium avium complex. Antimicrob Agents Chemother. 1991 Mar;35(3):462–470. doi: 10.1128/aac.35.3.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rastogi N., Labrousse V., Goh K. S., De Sousa J. P. Antimycobacterial spectrum of sparfloxacin and its activities alone and in association with other drugs against Mycobacterium avium complex growing extracellularly and intracellularly in murine and human macrophages. Antimicrob Agents Chemother. 1991 Dec;35(12):2473–2480. doi: 10.1128/aac.35.12.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rastogi N., Ross B. C., Dwyer B., Goh K. S., Clavel-Sérès S., Jeantils V., Cruaud P. Emergence during unsuccessful chemotherapy of multiple drug resistance in a strain of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 1992 Oct;11(10):901–907. doi: 10.1007/BF01962370. [DOI] [PubMed] [Google Scholar]
  31. Riley L. W. Drug-resistant tuberculosis. Clin Infect Dis. 1993 Nov;17 (Suppl 2):S442–S446. doi: 10.1093/clinids/17.supplement_2.s442. [DOI] [PubMed] [Google Scholar]
  32. Saito H., Sato K., Tomioka H., Dekio S. In vitro antimycobacterial activity of a new quinolone, levofloxacin (DR-3355). Tuber Lung Dis. 1995 Oct;76(5):377–380. doi: 10.1016/0962-8479(95)90001-2. [DOI] [PubMed] [Google Scholar]
  33. Siddiqi S. H., Hawkins J. E., Laszlo A. Interlaboratory drug susceptibility testing of Mycobacterium tuberculosis by a radiometric procedure and two conventional methods. J Clin Microbiol. 1985 Dec;22(6):919–923. doi: 10.1128/jcm.22.6.919-923.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Siddiqi S. H., Libonati J. P., Middlebrook G. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 1981 May;13(5):908–912. doi: 10.1128/jcm.13.5.908-912.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Skinner P. S., Furney S. K., Kleinert D. A., Orme I. M. Comparison of activities of fluoroquinolones in murine macrophages infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995 Mar;39(3):750–753. doi: 10.1128/AAC.39.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tanaka M., Otsuki M., Une T., Nishino T. In-vitro and in-vivo activity of DR-3355, an optically active isomer of ofloxacin. J Antimicrob Chemother. 1990 Nov;26(5):659–666. doi: 10.1093/jac/26.5.659. [DOI] [PubMed] [Google Scholar]
  37. Tsukamura M., Nakamura E., Yoshii S., Amano H. Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am Rev Respir Dis. 1985 Mar;131(3):352–356. doi: 10.1164/arrd.1985.131.3.352. [DOI] [PubMed] [Google Scholar]
  38. Une T., Fujimoto T., Sato K., Osada Y. In vitro activity of DR-3355, an optically active ofloxacin. Antimicrob Agents Chemother. 1988 Sep;32(9):1336–1340. doi: 10.1128/aac.32.9.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES