Abstract
The intrapulmonary pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin, and cefuroxime were studied in 68 volunteers who received single, oral doses of azithromycin (0.5 g), clarithormycin (0.5 g), ciprofloxacin (0.5 g), or cefuroxime (0.5 g). In subgroups of four subjects each, the subjects underwent bronchoscopy and bronchoalveolar lavage at timed intervals following drug administration. Drug concentrations, including those of 14-hydroxyclarithromycin (14H), were determined in serum, bronchoalveolar lavage fluid, and alveolar cells (ACs) by high-pressure liquid chromatography. Concentrations in epithelial lining fluid (ELF) were calculated by the urea diffusion method. The maximum observed concentrations (mean +/- standard deviation) of azithromycin, clarithromycin, 14H, ciprofloxacin, and cefuroxime in serum were 0.13 +/- 0.07, 1.0 +/- 0.6, 0.60 +/- 0.41, 0.95 +/- 0.32, and 1.1 +/- 0.3 microgram/ml, respectively (all at 6 h). None of the antibiotics except clarithromycin (39.6 +/- 41.1 micrograms/ml) was detectable in ELF at the 6-h bronchoscopy. The movement into and persistence in cells was different for azithromycin and clarithromycin. In ACs azithromycin was not detectable at 6 h, reached its highest concentration at 120 h, and exhibited the greatest area under the curve (7,403 micrograms.hr ml-1). The peak concentration of clarithromycin (181 +/- 94.1 micrograms/ml) was greater and occurred earlier (6 h), but the area under the curve (2,006 micrograms.hr ml-1) was less than that observed for azithromycin. 14H was detectable in ACs at 6 h (40.3 +/- 5.2 micrograms/ml) and 12 h (32.8 +/- 57.2 micrograms/ml). The peak concentration of ciprofloxacin occurred at 6 h (4.3 +/- 5.2 micrograms/ml), and the area under the curve was 35.0 micrograms.hr ml-1. The data indicate that after the administration of a single dose, azithromycin, clarithromycin, and ciprofloxacin penetrated into ACs in therapeutic concentrations and that only clarithromycin was present in ELF. The correlation of these kinetic observations with clinical efficacy or toxicity was not investigated and is unclear, but the data provide a basis for further kinetic and clinical studies.
Full Text
The Full Text of this article is available as a PDF (283.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R., Joone G., van Rensburg C. E. An in-vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, TE-031), a new macrolide antimicrobial agent. J Antimicrob Chemother. 1988 Dec;22(6):923–933. doi: 10.1093/jac/22.6.923. [DOI] [PubMed] [Google Scholar]
- Baldwin D. R., Andrews J. M., Wise R., Honeybourne D. Bronchoalveolar distribution of cefuroxime axetil and in-vitro efficacy of observed concentrations against respiratory pathogens. J Antimicrob Chemother. 1992 Sep;30(3):377–385. doi: 10.1093/jac/30.3.377. [DOI] [PubMed] [Google Scholar]
- Baldwin D. R., Wise R., Andrews J. M., Ashby J. P., Honeybourne D. Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J. 1990 Sep;3(8):886–890. [PubMed] [Google Scholar]
- Baldwin D. R., Wise R., Andrews J. M., Gill M., Honeybourne D. Comparative bronchoalveolar concentrations of ciprofloxacin and lomefloxacin following oral administration. Respir Med. 1993 Nov;87(8):595–601. doi: 10.1016/s0954-6111(05)80262-8. [DOI] [PubMed] [Google Scholar]
- Bingen E., Doit C., Farinotti R., Lambert-Zechovsky N. Killing kinetics of cefuroxime against Streptococcus pneumoniae in an in vitro model simulating serum concentration profiles after intramuscular administration. Eur J Clin Microbiol Infect Dis. 1993 Apr;12(4):297–299. doi: 10.1007/BF01967263. [DOI] [PubMed] [Google Scholar]
- Bonnet M., Van der Auwera P. In vitro and in vivo intraleukocytic accumulation of azithromycin (CP-62, 993) and its influence on ex vivo leukocyte chemiluminescence. Antimicrob Agents Chemother. 1992 Jun;36(6):1302–1309. doi: 10.1128/aac.36.6.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catchpole C., Andrews J. M., Woodcock J., Wise R. The comparative pharmacokinetics and tissue penetration of single-dose ciprofloxacin 400 mg i.v. and 750 mg po. J Antimicrob Chemother. 1994 Jan;33(1):103–110. doi: 10.1093/jac/33.1.103. [DOI] [PubMed] [Google Scholar]
- Chu S. Y., Sennello L. T., Bunnell S. T., Varga L. L., Wilson D. S., Sonders R. C. Pharmacokinetics of clarithromycin, a new macrolide, after single ascending oral doses. Antimicrob Agents Chemother. 1992 Nov;36(11):2447–2453. doi: 10.1128/aac.36.11.2447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu S. Y., Sennello L. T., Sonders R. C. Simultaneous determination of clarithromycin and 14(R)-hydroxyclarithromycin in plasma and urine using high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1991 Nov 15;571(1-2):199–208. doi: 10.1016/0378-4347(91)80446-j. [DOI] [PubMed] [Google Scholar]
- Chu S. Y., Wilson D. S., Guay D. R., Craft C. Clarithromycin pharmacokinetics in healthy young and elderly volunteers. J Clin Pharmacol. 1992 Nov;32(11):1045–1049. doi: 10.1002/j.1552-4604.1992.tb03809.x. [DOI] [PubMed] [Google Scholar]
- Conte J. E., Jr, Golden J. A., Duncan S., McKenna E., Zurlinden E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob Agents Chemother. 1995 Feb;39(2):334–338. doi: 10.1128/aac.39.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donowitz G. R., Earnhardt K. I. Azithromycin inhibition of intracellular Legionella micdadei. Antimicrob Agents Chemother. 1993 Nov;37(11):2261–2264. doi: 10.1128/aac.37.11.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ettensohn D. B., Jankowski M. J., Redondo A. A., Duncan P. G. Bronchoalveolar lavage in the normal volunteer subject. 2. Safety and results of repeated BAL, and use in the assessment of intrasubject variability. Chest. 1988 Aug;94(2):281–285. doi: 10.1378/chest.94.2.281. [DOI] [PubMed] [Google Scholar]
- Fitzgeorge R. B., Lever S., Baskerville A. A comparison of the efficacy of azithromycin and clarithromycin in oral therapy of experimental airborne Legionnaires' disease. J Antimicrob Chemother. 1993 Jun;31 (Suppl E):171–176. doi: 10.1093/jac/31.suppl_e.171. [DOI] [PubMed] [Google Scholar]
- Gisby J., Wightman B. J., Beale A. S. Comparative efficacies of ciprofloxacin, amoxicillin, amoxicillin-clavulanic acid, and cefaclor against experimental Streptococcus pneumoniae respiratory infections in mice. Antimicrob Agents Chemother. 1991 May;35(5):831–836. doi: 10.1128/aac.35.5.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammerschlag M. R., Qumei K. K., Roblin P. M. In vitro activities of azithromycin, clarithromycin, L-ofloxacin, and other antibiotics against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Jul;36(7):1573–1574. doi: 10.1128/aac.36.7.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoepelman A. I., Sips A. P., van Helmond J. L., van Barneveld P. W., Neve A. J., Zwinkels M., Rozenberg-Arska M., Verhoef J. A single-blind comparison of three-day azithromycin and ten-day co-amoxiclav treatment of acute lower respiratory tract infections. J Antimicrob Chemother. 1993 Jun;31 (Suppl E):147–152. doi: 10.1093/jac/31.suppl_e.147. [DOI] [PubMed] [Google Scholar]
- Honeybourne D., Baldwin D. R. The site concentrations of antimicrobial agents in the lung. J Antimicrob Chemother. 1992 Sep;30(3):249–260. doi: 10.1093/jac/30.3.249. [DOI] [PubMed] [Google Scholar]
- Honeybourne D., Kees F., Andrews J. M., Baldwin D., Wise R. The levels of clarithromycin and its 14-hydroxy metabolite in the lung. Eur Respir J. 1994 Jul;7(7):1275–1280. doi: 10.1183/09031936.94.07071275. [DOI] [PubMed] [Google Scholar]
- Israel D., Gillum J. G., Turik M., Harvey K., Ford J., Dalton H., Towle M., Echols R., Heller A. H., Polk R. Pharmacokinetics and serum bactericidal titers of ciprofloxacin and ofloxacin following multiple oral doses in healthy volunteers. Antimicrob Agents Chemother. 1993 Oct;37(10):2193–2199. doi: 10.1128/aac.37.10.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James N. C., Donn K. H., Collins J. J., Davis I. M., Lloyd T. L., Hart R. W., Powell J. R. Pharmacokinetics of cefuroxime axetil and cefaclor: relationship of concentrations in serum to MICs for common respiratory pathogens. Antimicrob Agents Chemother. 1991 Sep;35(9):1860–1863. doi: 10.1128/aac.35.9.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi K., Suzuki H., Hayashi M., Saruta T. Pharmacokinetics of cefuroxime axetil in patients with normal and impaired renal function. J Antimicrob Chemother. 1993 Mar;31(3):413–420. doi: 10.1093/jac/31.3.413. [DOI] [PubMed] [Google Scholar]
- Lalak N. J., Morris D. L. Azithromycin clinical pharmacokinetics. Clin Pharmacokinet. 1993 Nov;25(5):370–374. doi: 10.2165/00003088-199325050-00003. [DOI] [PubMed] [Google Scholar]
- Lee B. L., Padula A. M., Kimbrough R. C., Jones S. R., Chaisson R. E., Mills J., Sande M. A. Infectious complications with respiratory pathogens despite ciprofloxacin therapy. N Engl J Med. 1991 Aug 15;325(7):520–521. doi: 10.1056/nejm199108153250719. [DOI] [PubMed] [Google Scholar]
- Merchant R. K., Schwartz D. A., Helmers R. A., Dayton C. S., Hunninghake G. W. Bronchoalveolar lavage cellularity. The distribution in normal volunteers. Am Rev Respir Dis. 1992 Aug;146(2):448–453. doi: 10.1164/ajrccm/146.2.448. [DOI] [PubMed] [Google Scholar]
- Meyer A. P., Bril-Bazuin C., Mattie H., van den Broek P. J. Uptake of azithromycin by human monocytes and enhanced intracellular antibacterial activity against Staphylococcus aureus. Antimicrob Agents Chemother. 1993 Nov;37(11):2318–2322. doi: 10.1128/aac.37.11.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paniara O., Platsouka E., Dimopoulou H., Constantoulaki S. In vitro evaluation of cefodizime, cefuroxime, ceftriaxone against respiratory pathogens. J Chemother. 1994 Feb;6(1):35–38. doi: 10.1080/1120009x.1994.11741126. [DOI] [PubMed] [Google Scholar]
- Peters D. H., Friedel H. A., McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1992 Nov;44(5):750–799. doi: 10.2165/00003495-199244050-00007. [DOI] [PubMed] [Google Scholar]
- Rastogi N., Goh K. S., Labrousse V. Activity of clarithromycin compared with those of other drugs against Mycobacterium paratuberculosis and further enhancement of its extracellular and intracellular activities by ethambutol. Antimicrob Agents Chemother. 1992 Dec;36(12):2843–2846. doi: 10.1128/aac.36.12.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
- Ritchie D. J., Hopefl A. W., Milligan T. W., Byrne J. E., Maddux M. S. In vitro activity of clarithromycin, cefprozil, and other common oral antimicrobial agents against gram-positive and gram-negative pathogens. Clin Ther. 1993 Jan-Feb;15(1):107–113. [PubMed] [Google Scholar]
- Scaglione F., Demartini G., Dugnani S., Fraschini F. A new model examining intracellular and extracellular activity of amoxicillin, azithromycin, and clarithromycin in infected cells. Chemotherapy. 1993 Nov-Dec;39(6):416–423. doi: 10.1159/000238987. [DOI] [PubMed] [Google Scholar]
- Shepard R. M., Duthu G. S., Ferraina R. A., Mullins M. A. High-performance liquid chromatographic assay with electrochemical detection for azithromycin in serum and tissues. J Chromatogr. 1991 Apr 19;565(1-2):321–337. doi: 10.1016/0378-4347(91)80393-q. [DOI] [PubMed] [Google Scholar]
- TALKE H., SCHUBERT G. E. ENZYMATISCHE HARNSTOFFBESTIMMUNG IN BLUT UND SERUM IM OPTISCHEN TEST NACH WARBURG. Klin Wochenschr. 1965 Feb 1;43:174–175. doi: 10.1007/BF01484513. [DOI] [PubMed] [Google Scholar]
- Wildfeuer A., Laufen H., Leitold M., Zimmermann T. Comparison of the pharmacokinetics of three-day and five-day regimens of azithromycin in plasma and urine. J Antimicrob Chemother. 1993 Jun;31 (Suppl E):51–56. doi: 10.1093/jac/31.suppl_e.51. [DOI] [PubMed] [Google Scholar]
- Willcox M., Kervitsky A., Watters L. C., King T. E., Jr Quantification of cells recovered by bronchoalveolar lavage. Comparison of cytocentrifuge preparations with the filter method. Am Rev Respir Dis. 1988 Jul;138(1):74–80. doi: 10.1164/ajrccm/138.1.74. [DOI] [PubMed] [Google Scholar]
- Williams J. D., Maskell J. P., Shain H., Chrysos G., Sefton A. M., Fraser H. Y., Hardie J. M. Comparative in-vitro activity of azithromycin, macrolides (erythromycin, clarithromycin and spiramycin) and streptogramin RP 59500 against oral organisms. J Antimicrob Chemother. 1992 Jul;30(1):27–37. doi: 10.1093/jac/30.1.27. [DOI] [PubMed] [Google Scholar]
- Wise R., Bennett S. A., Dent J. The pharmacokinetics of orally absorbed cefuroxime compared with amoxycillin/clavulanic acid. J Antimicrob Chemother. 1984 Jun;13(6):603–610. doi: 10.1093/jac/13.6.603. [DOI] [PubMed] [Google Scholar]