Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jul;40(7):1645–1648. doi: 10.1128/aac.40.7.1645

Induction signals for vancomycin resistance encoded by the vanA gene cluster in Enterococcus faecium.

M H Lai 1, D R Kirsch 1
PMCID: PMC163388  PMID: 8807055

Abstract

The induction of vancomycin resistance in enterococci containing the vanA gene cluster is thought to be controlled by a two-component sensor-response regulator system encoded by vanR and vanS. Eight inducing compounds were identified by screening a panel of more than 6,800 antibiotics and synthetic compounds including the three tested glycopeptides (vancomycin, avoparcin, and ristocetin), two other cell wall biosynthesis inhibitors (moenomycin and bacitracin), two cyclic peptide antibiotics (antibiotic AO341 beta and polymyxin B), and a macrocyclic lactone antibiotic (moxidectin). Induction activity by structurally unrelated antibiotics suggests that the induction signal is not a structural feature of vancomycin.

Full Text

The Full Text of this article is available as a PDF (315.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arena J. P., Liu K. K., Paress P. S., Frazier E. G., Cully D. F., Mrozik H., Schaeffer J. M. The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J Parasitol. 1995 Apr;81(2):286–294. [PubMed] [Google Scholar]
  2. Arthur M., Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 1993 Aug;37(8):1563–1571. doi: 10.1128/aac.37.8.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arthur M., Molinas C., Bugg T. D., Wright G. D., Walsh C. T., Courvalin P. Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1992 Apr;36(4):867–869. doi: 10.1128/aac.36.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arthur M., Molinas C., Courvalin P. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1992 Apr;174(8):2582–2591. doi: 10.1128/jb.174.8.2582-2591.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arthur M., Molinas C., Dutka-Malen S., Courvalin P. Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases. Gene. 1991 Jul 15;103(1):133–134. doi: 10.1016/0378-1119(91)90405-z. [DOI] [PubMed] [Google Scholar]
  6. Bugg T. D., Wright G. D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C. T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991 Oct 29;30(43):10408–10415. doi: 10.1021/bi00107a007. [DOI] [PubMed] [Google Scholar]
  7. Chang C. C., Morton G. O., James J. C., Siegel M. M., Kuck N. A., Testa R. T., Borders D. B. LL-AF283 antibiotics, cyclic biphenyl peptides. J Antibiot (Tokyo) 1991 Jun;44(6):674–677. doi: 10.7164/antibiotics.44.674. [DOI] [PubMed] [Google Scholar]
  8. Dutka-Malen S., Molinas C., Arthur M., Courvalin P. The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol Gen Genet. 1990 Dec;224(3):364–372. doi: 10.1007/BF00262430. [DOI] [PubMed] [Google Scholar]
  9. Facklam R. R., Padula J. F., Wortham E. C., Cooksey R. C., Rountree H. A. Presumptive identification of group A, B, and D streptococci on agar plate media. J Clin Microbiol. 1979 Jun;9(6):665–672. doi: 10.1128/jcm.9.6.665-672.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Handwerger S., Kolokathis A. Induction of vancomycin resistance in Enterococcus faecium by inhibition of transglycosylation. FEMS Microbiol Lett. 1990 Jul;58(2):167–170. doi: 10.1111/j.1574-6968.1990.tb13972.x. [DOI] [PubMed] [Google Scholar]
  11. Kantor S., Kennett R. L., Jr, Waletzky E., Tomcufcik A. S. 1,3-Bis(p-chlorobenzylideneamino)guanidine hydrochloride (robenzidene): new poultry anticoccidial agent. Science. 1970 Apr 17;168(3929):373–374. doi: 10.1126/science.168.3929.373. [DOI] [PubMed] [Google Scholar]
  12. Martin R. J. Neuromuscular transmission in nematode parasites and antinematodal drug action. Pharmacol Ther. 1993;58(1):13–50. doi: 10.1016/0163-7258(93)90065-l. [DOI] [PubMed] [Google Scholar]
  13. Shaw W. V. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 1975;43:737–755. doi: 10.1016/0076-6879(75)43141-x. [DOI] [PubMed] [Google Scholar]
  14. Whaley H. A., Patterson E. L., Kunstmann M. P., Bohonos N. LL-A0341 A and B, new antibiotics. II. Chemical properties. Antimicrob Agents Chemother (Bethesda) 1966;6:591–594. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES