Abstract
The pharmacokinetic parameters of amikacin were determined in a population of 20 adults and 36 pediatric patients admitted into an intensive care unit. Amikacin was administered by repeated intravenous infusion over 0.5 h (600 to 1,350 mg for adults; 70 to 1,500 mg for children). The number of administrations ranged from 2 to 17, and the number of samples collected from each patient ranged from 2 to 70. The population enrolled in the study had large variabilities in age (0.5 to 85 years), weight (6 to 95 kg), height (72 to 187 cm), creatinine clearance rate (18 to 110 ml/min), blood urea nitrogen concentration (1.5 to 15 mmol/liter), and total protein concentration (30 to 91 g/liter). The mean population parameters and their interindividual variabilities were obtained for an initial group of 44 patients (16 adults and 28 children). A two-compartment model was fitted to the population data by using the computer program P-PHARM. Model selection was guided by evaluation of the minimum objective function and the weighted residuals. The population analysis has been performed with the complete set of the collected data, including the individual serum amikacin concentration together with the individual estimate of the creatinine clearance values. The potential sources of variability in the population parameters were investigated by using patients' age, height, weight, creatinine clearance, blood urea nitrogen concentration, and total protein concentration as covariables. A test group of 12 additional patients (4 adults and 8 children) was used to evaluate the predictive performances of the population parameters. The individual pharmacokinetic parameters were computed by a Bayesian fitting procedure. From the resulting individualized values of the parameters, the concentrations of amikacin in the serum of the patients were calculated. To evaluate the performance of the Bayesian estimation, the experimental concentrations were compared with the predicted ones. The Bayesian approached developed in the study accurately predicts amikacin concentrations in serum and allows for the estimation of amikacin pharmacokinetics parameters, minimizing the risk of bias in the prediction. This was demonstrated in patients with both stable and unstable renal functions.
Full Text
The Full Text of this article is available as a PDF (827.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burton M. E., Ash C. L., Hill D. P., Jr, Handy T., Shepherd M. D., Vasko M. R. A controlled trial of the cost benefit of computerized bayesian aminoglycoside administration. Clin Pharmacol Ther. 1991 Jun;49(6):685–694. doi: 10.1038/clpt.1991.86. [DOI] [PubMed] [Google Scholar]
- Burton M. E., Brater D. C., Chen P. S., Day R. B., Huber P. J., Vasko M. R. A Bayesian feedback method of aminoglycoside dosing. Clin Pharmacol Ther. 1985 Mar;37(3):349–357. doi: 10.1038/clpt.1985.51. [DOI] [PubMed] [Google Scholar]
- Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
- Davey P. G., Geddes A. M., Gonda I., Harpur E. S., Scott D. K. Comparison of methods for estimating gentamicin clearance and retrospective analysis of changes in clearance with emphasis on patients with normal renal function. Br J Clin Pharmacol. 1984 Feb;17(2):147–155. doi: 10.1111/j.1365-2125.1984.tb02329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis R. L., Lehmann D., Stidley C. A., Neidhart J. Amikacin pharmacokinetics in patients receiving high-dose cancer chemotherapy. Antimicrob Agents Chemother. 1991 May;35(5):944–947. doi: 10.1128/aac.35.5.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dechaux M., Gonzalez G., Broyer M. Creatinine plasmatique, clearance et excretion urinaire de la creatinine chez l'enfant. Relations avec l'age et le degré d'insuffisance renale. Arch Fr Pediatr. 1978 Jan;35(1):53–62. [PubMed] [Google Scholar]
- Ette E. I., Ludden T. M. Population pharmacokinetic modeling: the importance of informative graphics. Pharm Res. 1995 Dec;12(12):1845–1855. doi: 10.1023/a:1016215116835. [DOI] [PubMed] [Google Scholar]
- Fagon J. Y., Chastre J., Hance A. J., Guiguet M., Trouillet J. L., Domart Y., Pierre J., Gibert C. Detection of nosocomial lung infection in ventilated patients. Use of a protected specimen brush and quantitative culture techniques in 147 patients. Am Rev Respir Dis. 1988 Jul;138(1):110–116. doi: 10.1164/ajrccm/138.1.110. [DOI] [PubMed] [Google Scholar]
- Franson T. R., Quebbeman E. J., Whipple J., Thomson R., Bubrick J., Rosenberger S. L., Ausman R. K. Prospective comparison of traditional and pharmacokinetic aminoglycoside dosing methods. Crit Care Med. 1988 Sep;16(9):840–843. doi: 10.1097/00003246-198809000-00004. [DOI] [PubMed] [Google Scholar]
- Garraffo R., Iliadis A., Cano J. P., Dellamonica P., Lapalus P. Application of Bayesian estimation for the prediction of an appropriate dosage regimen of amikacin. J Pharm Sci. 1989 Sep;78(9):753–757. doi: 10.1002/jps.2600780911. [DOI] [PubMed] [Google Scholar]
- Gomeni R., Pineau G., Mentré F. Population kinetics and conditional assessment of the optimal dosage regimen using the P-PHARM software package. Anticancer Res. 1994 Nov-Dec;14(6A):2321–2326. [PubMed] [Google Scholar]
- Hickling K., Begg E., Moore M. L. A prospective randomised trial comparing individualised pharmacokinetic dosage prediction for aminoglycosides with prediction based on estimated creatinine clearance in critically ill patients. Intensive Care Med. 1989;15(4):233–237. doi: 10.1007/BF00271057. [DOI] [PubMed] [Google Scholar]
- Hurst A. K., Yoshinaga M. A., Mitani G. H., Foo K. A., Jelliffe R. W., Harrison E. C. Application of a Bayesian method to monitor and adjust vancomycin dosage regimens. Antimicrob Agents Chemother. 1990 Jun;34(6):1165–1171. doi: 10.1128/aac.34.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaksson B., Nilsson L., Maller R., Sörén L. Postantibiotic effect of aminoglycosides on gram-negative bacteria evaluated by a new method. J Antimicrob Chemother. 1988 Jul;22(1):23–33. doi: 10.1093/jac/22.1.23. [DOI] [PubMed] [Google Scholar]
- Kumana C. R., Yuen K. Y. Parenteral aminoglycoside therapy. Selection, administration and monitoring. Drugs. 1994 Jun;47(6):902–913. doi: 10.2165/00003495-199447060-00004. [DOI] [PubMed] [Google Scholar]
- Lacarelle B., Granthil C., Manelli J. C., Bruder N., Francois G., Cano J. P. Evaluation of a Bayesian method of amikacin dosing in intensive care unit patients with normal or impaired renal function. Ther Drug Monit. 1987 Jun;9(2):154–160. doi: 10.1097/00007691-198706000-00005. [DOI] [PubMed] [Google Scholar]
- Lenert L. A., Klostermann H., Coleman R. W., Lurie J., Blaschke T. F. Practical computer-assisted dosing for aminoglycoside antibiotics. Antimicrob Agents Chemother. 1992 Jun;36(6):1230–1235. doi: 10.1128/aac.36.6.1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marik P. E., Havlik I., Monteagudo F. S., Lipman J. The pharmacokinetic of amikacin in critically ill adult and paediatric patients: comparison of once- versus twice-daily dosing regimens. J Antimicrob Chemother. 1991 May;27 (Suppl 100):81–89. doi: 10.1093/jac/27.suppl_c.81. [DOI] [PubMed] [Google Scholar]
- Mentré F., Gomeni R. A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. J Biopharm Stat. 1995 Jul;5(2):141–158. doi: 10.1080/10543409508835104. [DOI] [PubMed] [Google Scholar]
- Moore R. D., Lietman P. S., Smith C. R. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987 Jan;155(1):93–99. doi: 10.1093/infdis/155.1.93. [DOI] [PubMed] [Google Scholar]
- Sheiner L. B., Beal S. L. Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm. 1981 Oct;9(5):635–651. doi: 10.1007/BF01061030. [DOI] [PubMed] [Google Scholar]
- Sheiner L. B., Beal S. L. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981 Aug;9(4):503–512. doi: 10.1007/BF01060893. [DOI] [PubMed] [Google Scholar]
- Traub S. L., Johnson C. E. Comparison of methods of estimating creatinine clearance in children. Am J Hosp Pharm. 1980 Feb;37(2):195–201. [PubMed] [Google Scholar]
- Trujillo H., Robledo J., Robledo C., Espinal D., Garces G., Mejia J., Restrepo C., Restrepo F., Mejia de Rodriguez G. I., Tamayo de Guitierrez M. C. Single daily dose amikacin in paediatric patients with severe gram-negative infections. J Antimicrob Chemother. 1991 May;27 (Suppl 100):141–147. doi: 10.1093/jac/27.suppl_c.141. [DOI] [PubMed] [Google Scholar]
- Van der Auwera P. Pharmacokinetic evaluation of single daily dose amikacin. J Antimicrob Chemother. 1991 May;27 (Suppl 100):63–71. doi: 10.1093/jac/27.suppl_c.63. [DOI] [PubMed] [Google Scholar]
- Zaske D. E., Cipolle R. J., Rotschafer J. C., Solem L. D., Mosier N. R., Strate R. G. Gentamicin pharmacokinetics in 1,640 patients: method for control of serum concentrations. Antimicrob Agents Chemother. 1982 Mar;21(3):407–411. doi: 10.1128/aac.21.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
