Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Aug;40(8):1790–1795. doi: 10.1128/aac.40.8.1790

Detection of rifampin- and ciprofloxacin-resistant Mycobacterium tuberculosis by using species-specific assays for precursor rRNA.

G A Cangelosi 1, W H Brabant 1, T B Britschgi 1, C K Wallis 1
PMCID: PMC163418  PMID: 8843282

Abstract

rRNA precursor (pre-rRNA) molecules carry terminal stems which are removed during rRNA synthesis to form the mature rRNA subunits. Their abundance in bacterial cells can be markedly affected by antibiotics which directly or indirectly inhibit RNA synthesis. We evaluated the feasibility of rapidly detecting antibiotic-resistant Mycobacterium tuberculosis strains by measuring the effects of brief in vitro antibiotic exposure on mycobacterial pre-rRNA. By hybridizing extracted M. tuberculosis nucleic acid with radiolabeled nucleic acid probes specific for pre-16S rRNA stem sequences, we detected clear responses to rifampin and ciprofloxacin within 24 and 48 h, respectively, of exposure of cultured cells to these drugs. Detectable pre-rRNA was depleted in susceptible cells but remained abundant in resistant cells. In contrast, no measurable responses to isoniazid or ethambutol were observed. Probes for pre-rRNA were specific for the M. tuberculosis complex when tested against a panel of eight Mycobacterium species and 48 other bacteria. After 24 h of incubation with rifampin, resistant M. tuberculosis strains were detectable in a reverse transcriptase PCR assay for pre-rRNA with a calculated lower limit of sensitivity of approximately 10(2) cells. Susceptible cells were negative in this assay at over 500 times the calculated lower limit of sensitivity. This general approach may prove useful for rapidly testing the susceptibility of slowly growing Mycobacterium species to the rifamycin and fluoroquinolone drugs and, with possible modifications, to other drugs as well.

Full Text

The Full Text of this article is available as a PDF (363.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  3. Britschgi T. B., Cangelosi G. A. Detection of rifampin-resistant bacteria using DNA probes for precursor rRNA. Mol Cell Probes. 1995 Feb;9(1):19–24. doi: 10.1016/s0890-8508(95)90932-x. [DOI] [PubMed] [Google Scholar]
  4. Cangelosi G. A., Iversen J. M., Zuo Y., Oswald T. K., Lamont R. J. Oligonucleotide probes for mutans streptococci. Mol Cell Probes. 1994 Feb;8(1):73–80. doi: 10.1006/mcpr.1994.1011. [DOI] [PubMed] [Google Scholar]
  5. Culliton B. J. Drug-resistant TB may bring epidemic. Nature. 1992 Apr 9;356(6369):473–473. doi: 10.1038/356473a0. [DOI] [PubMed] [Google Scholar]
  6. Finken M., Kirschner P., Meier A., Wrede A., Böttger E. C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993 Sep;9(6):1239–1246. doi: 10.1111/j.1365-2958.1993.tb01253.x. [DOI] [PubMed] [Google Scholar]
  7. Frothingham R., Hills H. G., Wilson K. H. Extensive DNA sequence conservation throughout the Mycobacterium tuberculosis complex. J Clin Microbiol. 1994 Jul;32(7):1639–1643. doi: 10.1128/jcm.32.7.1639-1643.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frothingham R., Wilson K. H. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol. 1993 May;175(10):2818–2825. doi: 10.1128/jb.175.10.2818-2825.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grillo M., Margolis F. L. Use of reverse transcriptase polymerase chain reaction to monitor expression of intronless genes. Biotechniques. 1990 Sep;9(3):262, 264, 266-8. [PubMed] [Google Scholar]
  10. Jacobs W. R., Jr, Barletta R. G., Udani R., Chan J., Kalkut G., Sosne G., Kieser T., Sarkis G. J., Hatfull G. F., Bloom B. R. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science. 1993 May 7;260(5109):819–822. doi: 10.1126/science.8484123. [DOI] [PubMed] [Google Scholar]
  11. Ji Y. E., Colston M. J., Cox R. A. Nucleotide sequence and secondary structures of precursor 16S rRNA of slow-growing mycobacteria. Microbiology. 1994 Jan;140(Pt 1):123–132. doi: 10.1099/13500872-140-1-123. [DOI] [PubMed] [Google Scholar]
  12. Kawa D. E., Pennell D. R., Kubista L. N., Schell R. F. Development of a rapid method for determining the susceptibility of Mycobacterium tuberculosis to isoniazid using the Gen-Probe DNA Hybridization System. Antimicrob Agents Chemother. 1989 Jul;33(7):1000–1005. doi: 10.1128/aac.33.7.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kempsell K. E., Ji Y. E., Estrada I. C., Colston M. J., Cox R. A. The nucleotide sequence of the promoter, 16S rRNA and spacer region of the ribosomal RNA operon of Mycobacterium tuberculosis and comparison with Mycobacterium leprae precursor rRNA. J Gen Microbiol. 1992 Aug;138(Pt 8):1717–1727. doi: 10.1099/00221287-138-8-1717. [DOI] [PubMed] [Google Scholar]
  14. King T. C., Schlessinger D. S1 nuclease mapping analysis of ribosomal RNA processing in wild type and processing deficient Escherichia coli. J Biol Chem. 1983 Oct 10;258(19):12034–12042. [PubMed] [Google Scholar]
  15. King T. C., Sirdeskmukh R., Schlessinger D. Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol Rev. 1986 Dec;50(4):428–451. doi: 10.1128/mr.50.4.428-451.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moncla B. J., Braham P., Dix K., Watanabe S., Schwartz D. Use of synthetic oligonucleotide DNA probes for the identification of Bacteroides gingivalis. J Clin Microbiol. 1990 Feb;28(2):324–327. doi: 10.1128/jcm.28.2.324-327.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patel B. K., Banerjee D. K., Butcher P. D. Determination of Mycobacterium leprae viability by polymerase chain reaction amplification of 71-kDa heat-shock protein mRNA. J Infect Dis. 1993 Sep;168(3):799–800. doi: 10.1093/infdis/168.3.799. [DOI] [PubMed] [Google Scholar]
  18. Poulsen L. K., Ballard G., Stahl D. A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993 May;59(5):1354–1360. doi: 10.1128/aem.59.5.1354-1360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rogall T., Wolters J., Flohr T., Böttger E. C. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol. 1990 Oct;40(4):323–330. doi: 10.1099/00207713-40-4-323. [DOI] [PubMed] [Google Scholar]
  20. Salfinger M., Pfyffer G. E. The new diagnostic mycobacteriology laboratory. Eur J Clin Microbiol Infect Dis. 1994 Nov;13(11):961–979. doi: 10.1007/BF02111498. [DOI] [PubMed] [Google Scholar]
  21. Sela S., Clark-Curtiss J. E. Cloning and characterization of the Mycobacterium leprae putative ribosomal RNA promoter in Escherichia coli. Gene. 1991 Feb 1;98(1):123–127. doi: 10.1016/0378-1119(91)90114-q. [DOI] [PubMed] [Google Scholar]
  22. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  23. Van Ness J., Chen L. The use of oligodeoxynucleotide probes in chaotrope-based hybridization solutions. Nucleic Acids Res. 1991 Oct 11;19(19):5143–5151. doi: 10.1093/nar/19.19.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]
  25. van der Vliet G. M., Schepers P., Schukkink R. A., van Gemen B., Klatser P. R. Assessment of mycobacterial viability by RNA amplification. Antimicrob Agents Chemother. 1994 Sep;38(9):1959–1965. doi: 10.1128/aac.38.9.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES