Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Aug;40(8):1893–1902. doi: 10.1128/aac.40.8.1893

Liposome encapsulation of clofazimine reduces toxicity in vitro and in vivo and improves therapeutic efficacy in the beige mouse model of disseminated Mycobacterium avium-M. intracellulare complex infection.

R T Mehta 1
PMCID: PMC163436  PMID: 8843300

Abstract

Disseminated infections caused by the Mycobacterium avium-M. intracellulare complex (MAC) are the most frequent opportunistic bacterial infections in patients with AIDS. MAC isolates are resistant to many of the standard antituberculous drugs. Failure to obtain significant activities of certain drugs is due to difficulty in achieving high concentrations at the sites where the infections reside. New and improved agents for the treatment of mycobacterial infections are therefore required. Earlier, the anti-MAC activities of various agents in free or liposomal form were studied; liposomes were used as drug carriers to ultimately target the drugs to macrophages where mycobacterial infections reside. Clofazimine was chosen for further studies because it could be effectively encapsulated and its activity was well maintained in liposomal form. The present studies with both erythrocytes and macrophages as the model systems show that liposomal drug is far less toxic in vitro than the free drug. The in vivo toxicity of clofazimine was also significantly reduced after liposome encapsulation. The therapeutic efficacies of free and liposomal drugs were compared in a beige mouse model of disseminated MAC infection. An equivalent dose of liposomal drug (10 mg/kg of body weight) was more effective in eliminating the bacterial from the various organs studied, particularly from the liver. Moreover, because of the reduced toxicity of liposomal drug, higher doses could be administered, resulting in a significant reduction in the numbers of CFU in the liver, spleen, and kidneys. The data demonstrate that liposomal clofazimine is highly effective in the treatment of MAC infections, even if the treatment is initiated after a disseminated infection has been established. The present studies thus suggest the potential usefulness of liposomal clofazimine for the treatment of disseminated MAC infections.

Full Text

The Full Text of this article is available as a PDF (798.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alving C. R. Delivery of liposome-encapsulated drugs to macrophages. Pharmacol Ther. 1983;22(3):407–424. doi: 10.1016/0163-7258(83)90010-4. [DOI] [PubMed] [Google Scholar]
  2. Ashtekar D., Düzgünes N., Gangadharam P. R. Activity of free and liposome encapsulated streptomycin against Mycobacterium avium complex (MAC) inside peritoneal macrophages. J Antimicrob Chemother. 1991 Oct;28(4):615–617. doi: 10.1093/jac/28.4.615. [DOI] [PubMed] [Google Scholar]
  3. Bakker-Woudenberg I. A., Roerdink F. H. Antimicrobial chemotherapy directed by liposomes. J Antimicrob Chemother. 1986 May;17(5):547–549. doi: 10.1093/jac/17.5.547. [DOI] [PubMed] [Google Scholar]
  4. Bermudez L. E., Wu M., Young L. S. Intracellular killing of Mycobacterium avium complex by rifapentine and liposome-encapsulated amikacin. J Infect Dis. 1987 Sep;156(3):510–513. doi: 10.1093/infdis/156.3.510. [DOI] [PubMed] [Google Scholar]
  5. Bermudez L. E., Yau-Young A. O., Lin J. P., Cogger J., Young L. S. Treatment of disseminated Mycobacterium avium complex infection of beige mice with liposome-encapsulated aminoglycosides. J Infect Dis. 1990 Jun;161(6):1262–1268. doi: 10.1093/infdis/161.6.1262. [DOI] [PubMed] [Google Scholar]
  6. Bermudez L. E., Young L. S. Phagocytosis and intracellular killing of Mycobacterium avium complex by human and murine macrophages. Braz J Med Biol Res. 1987;20(2):191–201. [PubMed] [Google Scholar]
  7. Bonventre P. F., Gregoriandis G. Killing of intraphagocytic Staphylococcus aureus by dihydrostreptomycin entrapped within liposomes. Antimicrob Agents Chemother. 1978 Jun;13(6):1049–1051. doi: 10.1128/aac.13.6.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlson G. A., Marshall S. T., Truesdale A. T. Adaptive immune defects and delayed rejection of allogeneic tumor cells in beige mice. Cell Immunol. 1984 Sep;87(2):348–356. doi: 10.1016/0008-8749(84)90004-2. [DOI] [PubMed] [Google Scholar]
  9. Cynamon M. H., Swenson C. E., Palmer G. S., Ginsberg R. S. Liposome-encapsulated-amikacin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1989 Aug;33(8):1179–1183. doi: 10.1128/aac.33.8.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. David H. L., Clavel-Seres S., Clement F., Goh K. S. Uptake of selected antibacterial agents in Mycobacterium avium. Zentralbl Bakteriol Mikrobiol Hyg A. 1987 Jul;265(3-4):385–392. [PubMed] [Google Scholar]
  11. Düzgüneş N., Ashtekar D. R., Flasher D. L., Ghori N., Debs R. J., Friend D. S., Gangadharam P. R. Treatment of Mycobacterium avium-intracellulare complex infection in beige mice with free and liposome-encapsulated streptomycin: role of liposome type and duration of treatment. J Infect Dis. 1991 Jul;164(1):143–151. doi: 10.1093/infdis/164.1.143. [DOI] [PubMed] [Google Scholar]
  12. Düzgüneş N., Perumal V. K., Kesavalu L., Goldstein J. A., Debs R. J., Gangadharam P. R. Enhanced effect of liposome-encapsulated amikacin on Mycobacterium avium-M. intracellulare complex infection in beige mice. Antimicrob Agents Chemother. 1988 Sep;32(9):1404–1411. doi: 10.1128/aac.32.9.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elin R. J., Edelin J. B., Wolff S. M. Infection and immunoglobulin concentrations in Chediak-Higashi mice. Infect Immun. 1974 Jul;10(1):88–91. doi: 10.1128/iai.10.1.88-91.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Emmen F., Storm G. Liposomes in treatment of infectious diseases. Pharm Weekbl Sci. 1987 Jun 19;9(3):162–171. doi: 10.1007/BF01967536. [DOI] [PubMed] [Google Scholar]
  15. Fauci A. S., Macher A. M., Longo D. L., Lane H. C., Rook A. H., Masur H., Gelmann E. P. NIH conference. Acquired immunodeficiency syndrome: epidemiologic, clinical, immunologic, and therapeutic considerations. Ann Intern Med. 1984 Jan;100(1):92–106. doi: 10.7326/0003-4819-100-1-92. [DOI] [PubMed] [Google Scholar]
  16. Forster D. J., Causey D. M., Rao N. A. Bull's eye retinopathy and clofazimine. Ann Intern Med. 1992 May 15;116(10):876–877. doi: 10.7326/0003-4819-116-10-876_2. [DOI] [PubMed] [Google Scholar]
  17. Gallin J. I., Bujak J. S., Patten E., Wolff S. M. Granulocyte function in the Chediak-Higashi syndrome of mice. Blood. 1974 Feb;43(2):201–206. [PubMed] [Google Scholar]
  18. Gangadharam P. R., Ashtekar D. A., Ghori N., Goldstein J. A., Debs R. J., Düzgünes N. Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother. 1991 Sep;28(3):425–435. doi: 10.1093/jac/28.3.425. [DOI] [PubMed] [Google Scholar]
  19. Gangadharam P. R., Ashtekar D. R., Flasher D. L., Düzgüneş N. Therapy of Mycobacterium avium complex infections in beige mice with streptomycin encapsulated in sterically stabilized liposomes. Antimicrob Agents Chemother. 1995 Mar;39(3):725–730. doi: 10.1128/AAC.39.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gangadharam P. R. Beige mouse model for Mycobacterium avium complex disease. Antimicrob Agents Chemother. 1995 Aug;39(8):1647–1654. doi: 10.1128/aac.39.8.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gangadharam P. R., Edwards C. K., 3rd, Murthy P. S., Pratt P. F. An acute infection model for Mycobacterium intracellulare disease using beige mice: preliminary results. Am Rev Respir Dis. 1983 May;127(5):648–649. doi: 10.1164/arrd.1983.127.5.648. [DOI] [PubMed] [Google Scholar]
  22. Gomez-Flores R., Gupta S., Tamez-Guerra R., Mehta R. T. Determination of MICs for Mycobacterium avium-M. intracellulare complex in liquid medium by a colorimetric method. J Clin Microbiol. 1995 Jul;33(7):1842–1846. doi: 10.1128/jcm.33.7.1842-1846.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Greene J. B., Sidhu G. S., Lewin S., Levine J. F., Masur H., Simberkoff M. S., Nicholas P., Good R. C., Zolla-Pazner S. B., Pollock A. A. Mycobacterium avium-intracellulare: a cause of disseminated life-threatening infection in homosexuals and drug abusers. Ann Intern Med. 1982 Oct;97(4):539–546. doi: 10.7326/0003-4819-97-4-539. [DOI] [PubMed] [Google Scholar]
  24. Holdiness M. R. Clinical pharmacokinetics of clofazimine. A review. Clin Pharmacokinet. 1989 Feb;16(2):74–85. doi: 10.2165/00003088-198916020-00002. [DOI] [PubMed] [Google Scholar]
  25. Kirkpatrick C. E., Farrell J. P. Leishmaniasis in beige mice. Infect Immun. 1982 Dec;38(3):1208–1216. doi: 10.1128/iai.38.3.1208-1216.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lane P. W., Murphy E. D. Susceptibility to spontaneous pneumonitis in an inbred strain of beige and satin mice. Genetics. 1972 Nov;72(3):451–460. doi: 10.1093/genetics/72.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Le Conte P., Le Gallou F., Potel G., Struillou L., Baron D., Drugeon H. B. Pharmacokinetics, toxicity, and efficacy of liposomal capreomycin in disseminated Mycobacterium avium beige mouse model. Antimicrob Agents Chemother. 1994 Dec;38(12):2695–2701. doi: 10.1128/aac.38.12.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lopez-Berestein G., Bodey G. P., Frankel L. S., Mehta K. Treatment of hepatosplenic candidiasis with liposomal-amphotericin B. J Clin Oncol. 1987 Feb;5(2):310–317. doi: 10.1200/JCO.1987.5.2.310. [DOI] [PubMed] [Google Scholar]
  29. Lopez-Berestein G., Fainstein V., Hopfer R., Mehta K., Sullivan M. P., Keating M., Rosenblum M. G., Mehta R., Luna M., Hersh E. M. Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis. 1985 Apr;151(4):704–710. doi: 10.1093/infdis/151.4.704. [DOI] [PubMed] [Google Scholar]
  30. Lopez-Berestein G., Rosenblum M. G., Mehta R. Altered tissue distribution of amphotericin B by liposomal encapsulation: comparison of normal mice to mice infected with Candida albicans. Cancer Drug Deliv. 1984 Summer;1(3):199–205. doi: 10.1089/cdd.1984.1.199. [DOI] [PubMed] [Google Scholar]
  31. Mehta R. T., Hopfer R. L., Gunner L. A., Juliano R. L., Lopez-Berestein G. Formulation, toxicity, and antifungal activity in vitro of liposome-encapsulated nystatin as therapeutic agent for systemic candidiasis. Antimicrob Agents Chemother. 1987 Dec;31(12):1897–1900. doi: 10.1128/aac.31.12.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mehta R. T., Keyhani A., McQueen T. J., Rosenbaum B., Rolston K. V., Tarrand J. J. In vitro activities of free and liposomal drugs against Mycobacterium avium-M. intracellulare complex and M. tuberculosis. Antimicrob Agents Chemother. 1993 Dec;37(12):2584–2587. doi: 10.1128/aac.37.12.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mehta R. T., McQueen T. J., Keyhani A., Lopez-Berestein G. Liposomal hamycin: reduced toxicity and improved antifungal efficacy in vitro and in vivo. J Infect Dis. 1991 Nov;164(5):1003–1006. doi: 10.1093/infdis/164.5.1003. [DOI] [PubMed] [Google Scholar]
  34. Mehta R. T., McQueen T. J., Keyhani A., López-Berestein G. Phagocyte transport as mechanism for enhanced therapeutic activity of liposomal amphotericin B. Chemotherapy. 1994 Jul-Aug;40(4):256–264. doi: 10.1159/000239202. [DOI] [PubMed] [Google Scholar]
  35. Mehta R. T., Mehta K., Lopez-Berestein G., Juliano R. L. Effect of liposomal amphotericin B on murine macrophages and lymphocytes. Infect Immun. 1985 Feb;47(2):429–433. doi: 10.1128/iai.47.2.429-433.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mehta R., Lopez-Berestein G., Hopfer R., Mills K., Juliano R. L. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta. 1984 Mar 14;770(2):230–234. doi: 10.1016/0005-2736(84)90135-4. [DOI] [PubMed] [Google Scholar]
  37. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  38. Pedroso de Lima M. C., Chiche B. H., Debs R. J., Düzgüneş N. Interaction of antimycobacterial and anti-pneumocystis drugs with phospholipid membranes. Chem Phys Lipids. 1990 Mar;53(4):361–371. doi: 10.1016/0009-3084(90)90034-o. [DOI] [PubMed] [Google Scholar]
  39. Peters J. H., Hamme K. J., Gordon G. R. Determination of clofazimine in plasma by high-performance liquid chromatography. J Chromatogr. 1982 May 14;229(2):503–508. doi: 10.1016/s0378-4347(00)84299-1. [DOI] [PubMed] [Google Scholar]
  40. Poznansky M. J., Juliano R. L. Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol Rev. 1984 Dec;36(4):277–336. [PubMed] [Google Scholar]
  41. Roder J. C. The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J Immunol. 1979 Nov;123(5):2168–2173. [PubMed] [Google Scholar]
  42. Saito H., Tomioka H. Therapeutic efficacy of liposome-entrapped rifampin against Mycobacterium avium complex infection induced in mice. Antimicrob Agents Chemother. 1989 Apr;33(4):429–433. doi: 10.1128/aac.33.4.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sandler E. D., Ng V. L., Hadley W. K. Clofazimine crystals in alveolar macrophages from a patient with the acquired immunodeficiency syndrome. Arch Pathol Lab Med. 1992 May;116(5):541–543. [PubMed] [Google Scholar]
  44. Saxena R. K., Saxena Q. B., Adler W. H. Defective T-cell response in beige mutant mice. Nature. 1982 Jan 21;295(5846):240–241. doi: 10.1038/295240a0. [DOI] [PubMed] [Google Scholar]
  45. Shellam G. R., Allan J. E., Papadimitriou J. M., Bancroft G. J. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5104–5108. doi: 10.1073/pnas.78.8.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stevenson M., Baillie A. J., Richards R. M. Enhanced activity of streptomycin and chloramphenicol against intracellular Escherichia coli in the J774 macrophage cell line mediated by liposome delivery. Antimicrob Agents Chemother. 1983 Nov;24(5):742–749. doi: 10.1128/aac.24.5.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Swenson C. E., Popescu M. C., Ginsberg R. S. Preparation and use of liposomes in the treatment of microbial infections. Crit Rev Microbiol. 1988;15 (Suppl 1):S1–31. doi: 10.3109/10408418809104463. [DOI] [PubMed] [Google Scholar]
  48. Tadakuma T., Ikewaki N., Yasuda T., Tsutsumi M., Saito S., Saito K. Treatment of experimental salmonellosis in mice with streptomycin entrapped in liposomes. Antimicrob Agents Chemother. 1985 Jul;28(1):28–32. doi: 10.1128/aac.28.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tomioka H., Saito H., Sato K., Yoneyama T. Therapeutic efficacy of liposome-encapsulated kanamycin against Mycobacterium intracellulare infection induced in mice. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):575–579. doi: 10.1164/ajrccm/144.3_Pt_1.575. [DOI] [PubMed] [Google Scholar]
  50. Vladimirsky M. A., Ladigina G. A. Antibacterial activity of liposome-entrapped streptomycin in mice infected with mycobacterium tuberculosis. Biomed Pharmacother. 1982;36(8-9):375–377. [PubMed] [Google Scholar]
  51. Young L. S., Inderlied C. B., Berlin O. G., Gottlieb M. S. Mycobacterial infections in AIDS patients, with an emphasis on the Mycobacterium avium complex. Rev Infect Dis. 1986 Nov-Dec;8(6):1024–1033. doi: 10.1093/clinids/8.6.1024. [DOI] [PubMed] [Google Scholar]
  52. Zakowski P., Fligiel S., Berlin G. W., Johnson L., Jr Disseminated Mycobacterium avium-intracellulare infection in homosexual men dying of acquired immunodeficiency. JAMA. 1982 Dec 10;248(22):2980–2982. doi: 10.1001/jama.1982.03330220024029. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES