Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Aug;40(8):1919–1923. doi: 10.1128/aac.40.8.1919

Anticryptococcal effect of amphotericin B is mediated through macrophage production of nitric oxide.

M Tohyama 1, K Kawakami 1, A Saito 1
PMCID: PMC163440  PMID: 8843304

Abstract

Amphotericin B (AmB) is a classical antifungal drug and one of the most effective antifungal drugs for the treatment of systemic fungal infection. It is also known to have various immunomodulating activities other than its direct antifungal effect. In the present study, we demonstrated that AmB augmented gamma interferon (IFN-gamma)-induced killing potentials of murine peritoneal macrophages against Cryptococcus neoformans in a dose-dependent manner. This effect was strongly blocked by NG-monomethyl-L-arginine, a competitive inhibitor of nitric oxide (NO) synthesis. In addition, AmB markedly augmented macrophage NO production induced by IFN-gamma with a dose-response curve similar to that seen with its effect on the anticryptococcal activity. These effects were partially mediated by either tumor necrosis factor alpha or interleukin-1, because AmB enhanced IFN-gamma-induced production of these cytokines by macrophages and their specific antibodies partially inhibited the AmB-induced enhancement of NO generation when they were used separately. Our results indicate that AmB induces the production of tumor necrosis factor alpha and IL-1 by macrophages and augments their anticryptococcal activity through triggering the NO-dependent pathway.

Full Text

The Full Text of this article is available as a PDF (215.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. B., Franzblau S. G., Vavrin Z., Hibbs J. B., Jr, Krahenbuhl J. L. L-arginine-dependent macrophage effector functions inhibit metabolic activity of Mycobacterium leprae. J Immunol. 1991 Sep 1;147(5):1642–1646. [PubMed] [Google Scholar]
  2. Alspaugh J. A., Granger D. L. Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis. Infect Immun. 1991 Jul;59(7):2291–2296. doi: 10.1128/iai.59.7.2291-2296.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cameron M. L., Granger D. L., Weinberg J. B., Kozumbo W. J., Koren H. S. Human alveolar and peritoneal macrophages mediate fungistasis independently of L-arginine oxidation to nitrite or nitrate. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1313–1319. doi: 10.1164/ajrccm/142.6_Pt_1.1313. [DOI] [PubMed] [Google Scholar]
  4. Chan J., Xing Y., Magliozzo R. S., Bloom B. R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med. 1992 Apr 1;175(4):1111–1122. doi: 10.1084/jem.175.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapman H. A., Jr, Hibbs J. B., Jr Modulation of macrophage tumoricidal capability by polyene antibiotics: support for membrane lipid as a regulatory determinant of macrophage function. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4349–4353. doi: 10.1073/pnas.75.9.4349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chia J. K., Pollack M. Amphotericin B induces tumor necrosis factor production by murine macrophages. J Infect Dis. 1989 Jan;159(1):113–116. doi: 10.1093/infdis/159.1.113. [DOI] [PubMed] [Google Scholar]
  7. Denis M. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell Immunol. 1991 Jan;132(1):150–157. doi: 10.1016/0008-8749(91)90014-3. [DOI] [PubMed] [Google Scholar]
  8. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  9. Futenma M., Kawakami K., Saito A. Production of tumor necrosis factor-alpha in granulocytopenic mice with pulmonary candidiasis and its modification with granulocyte colony-stimulating factor. Microbiol Immunol. 1995;39(6):411–417. doi: 10.1111/j.1348-0421.1995.tb02221.x. [DOI] [PubMed] [Google Scholar]
  10. Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. doi: 10.1172/JCI114422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. James S. L., Glaven J. Macrophage cytotoxicity against schistosomula of Schistosoma mansoni involves arginine-dependent production of reactive nitrogen intermediates. J Immunol. 1989 Dec 15;143(12):4208–4212. [PubMed] [Google Scholar]
  12. Langermans J. A., Van der Hulst M. E., Nibbering P. H., Hiemstra P. S., Fransen L., Van Furth R. IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. J Immunol. 1992 Jan 15;148(2):568–574. [PubMed] [Google Scholar]
  13. Liew F. Y., Millott S., Parkinson C., Palmer R. M., Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol. 1990 Jun 15;144(12):4794–4797. [PubMed] [Google Scholar]
  14. Little J. R., Plut E. J., Kotler-Brajtburg J., Medoff G., Kobayashi G. S. Relationship between the antibiotic and immunoadjuvant effects of amphotericin B methyl ester. Immunochemistry. 1978 Apr;15(4):219–224. doi: 10.1016/0161-5890(78)90058-5. [DOI] [PubMed] [Google Scholar]
  15. Lohr K. M., Snyderman R. Amphotericin B alters the affinity and functional activity of the oligopeptide chemotactic factor receptor on human polymorphonuclear leukocytes. J Immunol. 1982 Oct;129(4):1594–1599. [PubMed] [Google Scholar]
  16. Matsumoto T., Kaku M., Furuya N., Usui T., Kohno S., Tomono K., Tateda K., Hirakata Y., Yamaguchi K. Amphotericin B-induced resistance to Pseudomonas aeruginosa infection in mice. J Antibiot (Tokyo) 1993 May;46(5):777–784. doi: 10.7164/antibiotics.46.777. [DOI] [PubMed] [Google Scholar]
  17. Mehta R. T., Mehta K., Lopez-Berestein G., Juliano R. L. Effect of liposomal amphotericin B on murine macrophages and lymphocytes. Infect Immun. 1985 Feb;47(2):429–433. doi: 10.1128/iai.47.2.429-433.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murray H. W., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J Exp Med. 1980 Dec 1;152(6):1596–1609. doi: 10.1084/jem.152.6.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murray H. W., Teitelbaum R. F. L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect Dis. 1992 Mar;165(3):513–517. doi: 10.1093/infdis/165.3.513. [DOI] [PubMed] [Google Scholar]
  20. Nathan C. F., Hibbs J. B., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. doi: 10.1016/0952-7915(91)90079-g. [DOI] [PubMed] [Google Scholar]
  21. Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  23. Perfect J. R., Granger D. L., Durack D. T. Effects of antifungal agents and gamma interferon on macrophage cytotoxicity for fungi and tumor cells. J Infect Dis. 1987 Aug;156(2):316–323. doi: 10.1093/infdis/156.2.316. [DOI] [PubMed] [Google Scholar]
  24. Sarthou P., Primi D., Cazenave P. A. B cell triggering properties of a nontoxic derivative of amphotericin B. J Immunol. 1986 Oct 1;137(7):2156–2161. [PubMed] [Google Scholar]
  25. Schneemann M., Schoedon G., Hofer S., Blau N., Guerrero L., Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis. 1993 Jun;167(6):1358–1363. doi: 10.1093/infdis/167.6.1358. [DOI] [PubMed] [Google Scholar]
  26. Shirley S. F., Little J. R. Immunopotentiating effects of amphotericin B. I. Enhanced contact sensitivity in mice. J Immunol. 1979 Dec;123(6):2878–2882. [PubMed] [Google Scholar]
  27. Shirley S. F., Little J. R. Immunopotentiating effects of amphotericin B. II. Enhanced in vitro proliferative responses of murine lymphocytes. J Immunol. 1979 Dec;123(6):2883–2889. [PubMed] [Google Scholar]
  28. Stevens D. A. Fungal infections in AIDS patients. Br J Clin Pract Suppl. 1990 Sep;71:11–22. [PubMed] [Google Scholar]
  29. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tohyama M., Kawakami K., Futenma M., Saito A. Enhancing effect of oxygen radical scavengers on murine macrophage anticryptococcal activity through production of nitric oxide. Clin Exp Immunol. 1996 Mar;103(3):436–441. doi: 10.1111/j.1365-2249.1996.tb08299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tokuda Y., Tsuji M., Yamazaki M., Kimura S., Abe S., Yamaguchi H. Augmentation of murine tumor necrosis factor production by amphotericin B in vitro and in vivo. Antimicrob Agents Chemother. 1993 Oct;37(10):2228–2230. doi: 10.1128/aac.37.10.2228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolf J. E., Massof S. E. In vivo activation of macrophage oxidative burst activity by cytokines and amphotericin B. Infect Immun. 1990 May;58(5):1296–1300. doi: 10.1128/iai.58.5.1296-1300.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES