Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Sep;40(9):2126–2130. doi: 10.1128/aac.40.9.2126

Intestinal elimination of ofloxacin enantiomers in the rat: evidence of a carrier-mediated process.

L Rabbaa 1, S Dautrey 1, N Colas-Linhart 1, C Carbon 1, R Farinotti 1
PMCID: PMC163485  PMID: 8878593

Abstract

The aim of this work was to examine the mechanism involved in intestinal elimination of the two optical isomers of ofloxacin in the rat. An intestinal segment was isolated in situ and perfused with saline, while drug solution was administered via the carotid artery. Blood samples and intestinal effluents were collected and analyzed by a high-performance liquid chromatography method. We observed saturable and stereoselective intestinal elimination of the ofloxacin enantiomers. The elimination process favored the R-(+) form of the molecule. After a parenteral dose of 20 mg of racemic ofloxacin per kg of body weight, intestinal clearances were 0.23 +/- 0.03 versus 0.30 +/- 0.03 ml/min for S-(-)- and R-(+)-ofloxacin, respectively. Ciprofloxacin and pefloxacin interfered with ofloxacin elimination and significantly reduced the intestinal clearance of S-(-)- and R-(+)-ofloxacin. With concomitant ciprofloxacin, intestinal clearances became 0.13 +/- 0.02 versus 0.17 +/- 0.03 ml/min and 0.14 +/- 0.01 versus 0.19 +/- 0.05 ml/min with pefloxacin for S-(-)- and R-(+)-ofloxacin, respectively. Those findings argue for the presence of a common transport system in the rat intestine with variable affinities for fluoroquinolones. In addition, verapamil and quinidine, two P-glycoprotein blockers, significantly reduced the intestinal elimination of both ofloxacin isomers (with concomitant verapamil, intestinal clearances were 0.12 +/- 0.02 versus 0.18 +/- 0.03 ml/min for S-(-)- and R-(+)-ofloxacin, respectively, while with concomitant quinidine, values were 0.18 +/- 0.01 versus 0.23 +/- 0.01 ml/min without modifying their areas under the concentration-time curve in serum. Similar results were found with another fluoroquinolone, ciprofloxacin, in previous work. P-glycoprotein appears to be involved in the intestinal elimination of fluoroquinolones in rats. The characterization of fluoroquinolone intestinal elimination has significant clinical relevance for the better evaluation of the influence of this secretory pathway on antibiotic efficacy and selection of resistant bacteria within the intestinal flora.

Full Text

The Full Text of this article is available as a PDF (203.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affolter H., Hertel C., Jaeggi K., Portenier M., Staehelin M. (-)-S-[3H]CGP-12177 and its use to determine the rate constants of unlabeled beta-adrenergic antagonists. Proc Natl Acad Sci U S A. 1985 Feb;82(3):925–929. doi: 10.1073/pnas.82.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen C. N., Harpur E. S., Gray T. J., Simmons N. L., Hirst B. H. Efflux of bis-carboxyethyl-carboxyfluorescein (BCECF) by a novel ATP-dependent transport mechanism in epithelial cells. Biochem Biophys Res Commun. 1990 Oct 15;172(1):262–267. doi: 10.1016/s0006-291x(05)80203-7. [DOI] [PubMed] [Google Scholar]
  3. Bressolle F., Gonçalves F., Gouby A., Galtier M. Pefloxacin clinical pharmacokinetics. Clin Pharmacokinet. 1994 Dec;27(6):418–446. doi: 10.2165/00003088-199427060-00003. [DOI] [PubMed] [Google Scholar]
  4. Croop J. M., Raymond M., Haber D., Devault A., Arceci R. J., Gros P., Housman D. E. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol. 1989 Mar;9(3):1346–1350. doi: 10.1128/mcb.9.3.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fass R. J. The quinolones. Ann Intern Med. 1985 Mar;102(3):400–402. doi: 10.7326/0003-4819-102-3-400. [DOI] [PubMed] [Google Scholar]
  6. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  7. Freeman C. D., Nicolau D. P., Belliveau P. P., Nightingale C. H. Lomefloxacin clinical pharmacokinetics. Clin Pharmacokinet. 1993 Jul;25(1):6–19. doi: 10.2165/00003088-199325010-00002. [DOI] [PubMed] [Google Scholar]
  8. Fujimoto T., Mitsuhashi S. In vitro antibacterial activity of DR-3355, the S-(-)-isomer of ofloxacin. Chemotherapy. 1990;36(4):268–276. doi: 10.1159/000238777. [DOI] [PubMed] [Google Scholar]
  9. Furet Y. X., Deshusses J., Pechère J. C. Transport of pefloxacin across the bacterial cytoplasmic membrane in quinolone-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Nov;36(11):2506–2511. doi: 10.1128/aac.36.11.2506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gasic S., Eichler H. G., Korn A. Comparative effects of verapamil, tiapamil, diltiazem and nifedipine on systemic and splanchnic hemodynamics in man. Int J Clin Pharmacol Ther Toxicol. 1987 Sep;25(9):498–503. [PubMed] [Google Scholar]
  11. Granneman G. R., Stephan U., Birner B., Sörgel F., Mukherjee D. Effect of antacid medication on the pharmacokinetics of temafloxacin. Clin Pharmacokinet. 1992;22 (Suppl 1):83–89. doi: 10.2165/00003088-199200221-00014. [DOI] [PubMed] [Google Scholar]
  12. Griffiths N. M., Hirst B. H., Simmons N. L. Active intestinal secretion of the fluoroquinolone antibacterials ciprofloxacin, norfloxacin and pefloxacin; a common secretory pathway? J Pharmacol Exp Ther. 1994 May;269(2):496–502. [PubMed] [Google Scholar]
  13. Griffiths N. M., Hirst B. H., Simmons N. L. Active secretion of the fluoroquinolone ciprofloxacin by human intestinal epithelial Caco-2 cell layers. Br J Pharmacol. 1993 Mar;108(3):575–576. doi: 10.1111/j.1476-5381.1993.tb12844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):535–538. doi: 10.1128/aac.29.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hirano T., Iseki K., Miyazaki S., Takada M., Kobayashi M., Sugawara M., Miyazaki K. The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes. J Pharm Pharmacol. 1994 Aug;46(8):676–679. doi: 10.1111/j.2042-7158.1994.tb03881.x. [DOI] [PubMed] [Google Scholar]
  16. Høiby N. Clinical uses of nalidixic acid analogues: the fluoroquinolones. Eur J Clin Microbiol. 1986 Apr;5(2):138–140. doi: 10.1007/BF02013968. [DOI] [PubMed] [Google Scholar]
  17. Ince P., Elliott K., Appleton D. R., Moorghen M., Finney K. J., Sunter J. P., Harris A. L., Watson A. J. Modulation by verapamil of vincristine pharmacokinetics and sensitivity to metaphase arrest of the normal rat colon in organ culture. Biochem Pharmacol. 1991 Apr 15;41(8):1217–1225. doi: 10.1016/0006-2952(91)90661-n. [DOI] [PubMed] [Google Scholar]
  18. Le Coguic A., Bidault R., Farinotti R., Dauphin A. Determination of ofloxacin in plasma and urine by liquid chromatography. J Chromatogr. 1988 Dec 29;434(1):320–323. doi: 10.1016/0378-4347(88)80095-1. [DOI] [PubMed] [Google Scholar]
  19. Lode H., Höffken G., Olschewski P., Sievers B., Kirch A., Borner K., Koeppe P. Pharmacokinetics of ofloxacin after parenteral and oral administration. Antimicrob Agents Chemother. 1987 Sep;31(9):1338–1342. doi: 10.1128/aac.31.9.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lode H., Höffken G., Prinzing C., Glatzel P., Wiley R., Olschewski P., Sievers B., Reimnitz D., Borner K., Koeppe P. Comparative pharmacokinetics of new quinolones. Drugs. 1987;34 (Suppl 1):21–25. doi: 10.2165/00003495-198700341-00006. [DOI] [PubMed] [Google Scholar]
  21. Okazaki O., Kojima C., Hakusui H., Nakashima M. Enantioselective disposition of ofloxacin in humans. Antimicrob Agents Chemother. 1991 Oct;35(10):2106–2109. doi: 10.1128/aac.35.10.2106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Okazaki O., Kurata T., Tachizawa H. Stereoselective metabolic disposition of enantiomers of ofloxacin in rats. Xenobiotica. 1989 Apr;19(4):419–429. doi: 10.3109/00498258909042283. [DOI] [PubMed] [Google Scholar]
  23. Puro V., Narciso P., Girardi E., Antonelli L., Zaccarelli M., Visco G. Male-to-female transmission of human immunodeficiency virus infection by oro-genital sex. Eur J Clin Microbiol Infect Dis. 1991 Jan;10(1):47–47. doi: 10.1007/BF01967102. [DOI] [PubMed] [Google Scholar]
  24. Rubinstein E., Dautrey S., Farinoti R., St Julien L., Ramon J., Carbon C. Intestinal elimination of sparfloxacin, fleroxacin, and ciprofloxacin in rats. Antimicrob Agents Chemother. 1995 Jan;39(1):99–102. doi: 10.1128/aac.39.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rubinstein E., St Julien L., Ramon J., Dautrey S., Farinotti R., Huneau J. F., Carbon C. The intestinal elimination of ciprofloxacin in the rat. J Infect Dis. 1994 Jan;169(1):218–221. doi: 10.1093/infdis/169.1.218. [DOI] [PubMed] [Google Scholar]
  26. SCHANKER L. S., TOCCO D. J., BRODIE B. B., HOGBEN C. A. Absorption of drugs from the rat small intestine. J Pharmacol Exp Ther. 1958 May;123(1):81–88. [PubMed] [Google Scholar]
  27. Savina P. M., Staubus A. E., Gaginella T. S., Smith D. F. Optimal perfusion rate determined for in situ intestinal absorption studies in rats. J Pharm Sci. 1981 Mar;70(3):239–243. doi: 10.1002/jps.2600700303. [DOI] [PubMed] [Google Scholar]
  28. Sharma R. C., Inoue S., Roitelman J., Schimke R. T., Simoni R. D. Peptide transport by the multidrug resistance pump. J Biol Chem. 1992 Mar 25;267(9):5731–5734. [PubMed] [Google Scholar]
  29. Shimada J., Yamaji T., Ueda Y., Uchida H., Kusajima H., Irikura T. Mechanism of renal excretion of AM-715, a new quinolonecarboxylic acid derivative, in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1983 Jan;23(1):1–7. doi: 10.1128/aac.23.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sörgel F., Naber K. G., Jaehde U., Reiter A., Seelmann R., Sigl G. Gastrointestinal secretion of ciprofloxacin. Evaluation of the charcoal model for investigations in healthy volunteers. Am J Med. 1989 Nov 30;87(5A):62S–65S. doi: 10.1016/0002-9343(89)90025-9. [DOI] [PubMed] [Google Scholar]
  31. Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weiland G. A., Oswald R. E. The mechanism of binding of dihydropyridine calcium channel blockers to rat brain membranes. J Biol Chem. 1985 Jul 15;260(14):8456–8464. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES