Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Sep;40(9):2131–2136. doi: 10.1128/aac.40.9.2131

Genetic characterization of trimethoprim resistance in Haemophilus influenzae.

R de Groot 1, M Sluijter 1, A de Bruyn 1, J Campos 1, W H Goessens 1, A L Smith 1, P W Hermans 1
PMCID: PMC163486  PMID: 8878594

Abstract

We previously demonstrated that trimethoprim (Tmp) resistance in Haemophilus influenzae is mediated by chromosomally encoded dihydrofolate reductase (DHFR) with a modified primary structure and distinct kinetic properties. To gain insight into the relationship of the DHFR structure and the level of Tmp resistance that it confers on the host bacterium, we cloned and characterized the folH genes of one Tmp-susceptible and two Tmp-resistant H. influenzae strains. Differences were observed between Tmp-susceptible and Tmp-resistant isolates both in the promoter region and in the coding sequences. The effect of differences between H. influenzae folH genes on Tmp susceptibility was investigated in Escherichia coli. Various folH gene hybrids were constructed, and their influence on Tmp susceptibility was determined. Resistance in E. coli mediated by folH from H. influenzae strain R1047 was associated with alterations in the promoter and the central part of folH. In contrast, the E. coli Tmp resistance phenotype associated with the folH gene of H. influenzae R1042 was characterized by alterations in one or more of three amino acid residues at the C-terminal part of the protein. These data indicate that Tmp resistance is not only related to alterations in the promoter region of the folH gene and the Tmp binding domains at the N-terminal and central part of DHFR. Alterations in the C-terminal part may also cause Tmp resistance, probably as a result of a change in secondary structure and the subsequent loss of Tmp binding affinity.

Full Text

The Full Text of this article is available as a PDF (464.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amyes S. G., Towner K. J., Carter G. I., Thomson C. J., Young H. K. The type VII dihydrofolate reductase: a novel plasmid-encoded trimethoprim-resistant enzyme from gram-negative bacteria isolated in Britain. J Antimicrob Chemother. 1989 Aug;24(2):111–119. doi: 10.1093/jac/24.2.111. [DOI] [PubMed] [Google Scholar]
  2. Barclay B. J., Huang T., Nagel M. G., Misener V. L., Game J. C., Wahl G. M. Mapping and sequencing of the dihydrofolate reductase gene (DFR1) of Saccharomyces cerevisiae. Gene. 1988 Mar 31;63(2):175–185. doi: 10.1016/0378-1119(88)90523-9. [DOI] [PubMed] [Google Scholar]
  3. Burchall J. J., Elwell L. P., Fling M. E. Molecular mechanisms of resistance to trimethoprim. Rev Infect Dis. 1982 Mar-Apr;4(2):246–254. doi: 10.1093/clinids/4.2.246. [DOI] [PubMed] [Google Scholar]
  4. Burns J. L., Lien D. M., Hedin L. A. Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia. Antimicrob Agents Chemother. 1989 Aug;33(8):1247–1251. doi: 10.1128/aac.33.8.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flensburg J., Sköld O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem. 1987 Feb 2;162(3):473–476. doi: 10.1111/j.1432-1033.1987.tb10664.x. [DOI] [PubMed] [Google Scholar]
  6. Hitchings G. H., Burchall J. J. Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol Relat Areas Mol Biol. 1965;27:417–468. doi: 10.1002/9780470122723.ch9. [DOI] [PubMed] [Google Scholar]
  7. Huovinen P., Sundström L., Swedberg G., Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother. 1995 Feb;39(2):279–289. doi: 10.1128/aac.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kauc L., Mitchell M., Goodgal S. H. Size and physical map of the chromosome of Haemophilus influenzae. J Bacteriol. 1989 May;171(5):2474–2479. doi: 10.1128/jb.171.5.2474-2479.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lai E., Birren B. W., Clark S. M., Simon M. I., Hood L. Pulsed field gel electrophoresis. Biotechniques. 1989 Jan;7(1):34–42. [PubMed] [Google Scholar]
  10. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Powell M., Hu Y., Livermore D. M. Resistance to trimethoprim in Haemophilus influenzae. Infection. 1991 May-Jun;19(3):174–177. doi: 10.1007/BF01643245. [DOI] [PubMed] [Google Scholar]
  12. Remaut E., Stanssens P., Fiers W. Inducible high level synthesis of mature human fibroblast interferon in Escherichia coli. Nucleic Acids Res. 1983 Jul 25;11(14):4677–4688. doi: 10.1093/nar/11.14.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rouch D. A., Messerotti L. J., Loo L. S., Jackson C. A., Skurray R. A. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol Microbiol. 1989 Feb;3(2):161–175. doi: 10.1111/j.1365-2958.1989.tb01805.x. [DOI] [PubMed] [Google Scholar]
  14. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith D. R., Calvo J. M. Nucleotide sequence of the E coli gene coding for dihydrofolate reductase. Nucleic Acids Res. 1980 May 24;8(10):2255–2274. doi: 10.1093/nar/8.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith J. T., Amyes S. G. Bacterial resistance to antifolate chemotherapeutic agents mediated by plasmids. Br Med Bull. 1984 Jan;40(1):42–46. doi: 10.1093/oxfordjournals.bmb.a071946. [DOI] [PubMed] [Google Scholar]
  19. Then R. L. Mechanisms of resistance to trimethoprim, the sulfonamides, and trimethoprim-sulfamethoxazole. Rev Infect Dis. 1982 Mar-Apr;4(2):261–269. doi: 10.1093/clinids/4.2.261. [DOI] [PubMed] [Google Scholar]
  20. Wylie B. A., Amyes S. G., Young H. K., Koornhof H. J. Identification of a novel plasmid-encoded dihydrofolate reductase mediating high-level resistance to trimethoprim. J Antimicrob Chemother. 1988 Oct;22(4):429–435. doi: 10.1093/jac/22.4.429. [DOI] [PubMed] [Google Scholar]
  21. Young H. K., Amyes S. G. A new mechanism of plasmid trimethoprim resistance. Characterization of an inducible dihydrofolate reductase. J Biol Chem. 1986 Feb 25;261(6):2503–2505. [PubMed] [Google Scholar]
  22. de Groot R., Campos J., Moseley S. L., Smith A. L. Molecular cloning and mechanism of trimethoprim resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1988 Apr;32(4):477–484. doi: 10.1128/aac.32.4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de Groot R., Chaffin D. O., Kuehn M., Smith A. L. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydrofolate reductase(s). Biochem J. 1991 Mar 15;274(Pt 3):657–662. [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES