Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Oct;40(10):2300–2305. doi: 10.1128/aac.40.10.2300

Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors.

D Sanglard 1, F Ischer 1, M Monod 1, J Bille 1
PMCID: PMC163524  PMID: 8891134

Abstract

Some Candida albicans isolates from AIDS patients with oropharyngeal candidiasis are becoming resistant to the azole antifungal agent fluconazole after prolonged treatment with this compound. Most of the C. albicans isolates resistant to fluconazole fail to accumulate this antifungal agent, and this has been considered a cause of resistance. This phenomenon was shown to be linked to an increase in the amounts of mRNA of a C. albicans ABC (ATP-binding cassette) transporter gene called CDR1 and of a gene conferring benomyl resistance (BENr), the product of which belongs to the class of major facilitator multidrug efflux transporters (D. Sanglard, K. Kuchler, F. Ischer, J. L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother. 39:2378-2386, 1995). To analyze the roles of these multidrug transporters in the efflux of azole antifungal agents, we constructed C. albicans mutants with single and double deletion mutations of the corresponding genes. The mutants were tested for their susceptibilities to these antifungal agents. Our results indicated that the delta cdr1 C. albicans mutant was hypersusceptible to the azole derivatives fluconazole, itraconazole, and ketoconazole, thus showing that the ABC transporter Cdr1 can use these compounds as substrates. The delta cdr1 mutant was also hypersusceptible to other antifungal agents (terbinafine and amorolfine) and to different metabolic inhibitors (cycloheximide, brefeldin A, and fluphenazine). The same mutant was slightly more susceptible than the wild type to nocodazole, cerulenin, and crystal violet but not to amphotericin B, nikkomycin Z, flucytosine, or pradimicin. In contrast, the delta ben mutant was rendered more susceptible only to the mutagen 4-nitroquinoline-N-oxide. However, this mutation increased the susceptibilities of the cells to cycloheximide and cerulenin when the mutation was constructed in a delta cdr1 background. The assay used in the present study could be implemented with new antifungal agents and is a powerful tool for assigning these substances as putative substrates of multidrug transporters.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balzi E., Goffeau A. Genetics and biochemistry of yeast multidrug resistance. Biochim Biophys Acta. 1994 Aug 30;1187(2):152–162. doi: 10.1016/0005-2728(94)90102-3. [DOI] [PubMed] [Google Scholar]
  2. Bissinger P. H., Kuchler K. Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J Biol Chem. 1994 Feb 11;269(6):4180–4186. [PubMed] [Google Scholar]
  3. Clark F. S., Parkinson T., Hitchcock C. A., Gow N. A. Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: possible role for drug efflux in drug resistance. Antimicrob Agents Chemother. 1996 Feb;40(2):419–425. doi: 10.1128/aac.40.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Decottignies A., Lambert L., Catty P., Degand H., Epping E. A., Moye-Rowley W. S., Balzi E., Goffeau A. Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J Biol Chem. 1995 Jul 28;270(30):18150–18157. doi: 10.1074/jbc.270.30.18150. [DOI] [PubMed] [Google Scholar]
  5. Ehrenhofer-Murray A. E., Würgler F. E., Sengstag C. The Saccharomyces cerevisiae SGE1 gene product: a novel drug-resistance protein within the major facilitator superfamily. Mol Gen Genet. 1994 Aug 2;244(3):287–294. doi: 10.1007/BF00285456. [DOI] [PubMed] [Google Scholar]
  6. Evans G. L., Ni B., Hrycyna C. A., Chen D., Ambudkar S. V., Pastan I., Germann U. A., Gottesman M. M. Heterologous expression systems for P-glycoprotein: E. coli, yeast, and baculovirus. J Bioenerg Biomembr. 1995 Feb;27(1):43–52. doi: 10.1007/BF02110330. [DOI] [PubMed] [Google Scholar]
  7. Fling M. E., Kopf J., Tamarkin A., Gorman J. A., Smith H. A., Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991 Jun;227(2):318–329. doi: 10.1007/BF00259685. [DOI] [PubMed] [Google Scholar]
  8. Fonzi W. A., Irwin M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993 Jul;134(3):717–728. doi: 10.1093/genetics/134.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fung-Tomc J. C., Minassian B., Huczko E., Kolek B., Bonner D. P., Kessler R. E. In vitro antifungal and fungicidal spectra of a new pradimicin derivative, BMS-181184. Antimicrob Agents Chemother. 1995 Feb;39(2):295–300. doi: 10.1128/aac.39.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Georgopapadakou N. H., Walsh T. J. Human mycoses: drugs and targets for emerging pathogens. Science. 1994 Apr 15;264(5157):371–373. doi: 10.1126/science.8153622. [DOI] [PubMed] [Google Scholar]
  11. Goldway M., Teff D., Schmidt R., Oppenheim A. B., Koltin Y. Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother. 1995 Feb;39(2):422–426. doi: 10.1128/aac.39.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. González A., Jiménez A., Vázquez D., Davies J. E., Schindler D. Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochim Biophys Acta. 1978 Dec 21;521(2):459–469. doi: 10.1016/0005-2787(78)90287-3. [DOI] [PubMed] [Google Scholar]
  13. Graham T. R., Scott P. A., Emr S. D. Brefeldin A reversibly blocks early but not late protein transport steps in the yeast secretory pathway. EMBO J. 1993 Mar;12(3):869–877. doi: 10.1002/j.1460-2075.1993.tb05727.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hait W. N., Gesmonde J. F., Lazo J. S. Effect of anti-calmodulin drugs on the growth and sensitivity of C6 rat glioma cells to bleomycin. Anticancer Res. 1994 Sep-Oct;14(5A):1711–1721. [PubMed] [Google Scholar]
  15. Johnson E. M., Warnock D. W., Luker J., Porter S. R., Scully C. Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J Antimicrob Chemother. 1995 Jan;35(1):103–114. doi: 10.1093/jac/35.1.103. [DOI] [PubMed] [Google Scholar]
  16. Kerridge D. Mode of action of clinically important antifungal drugs. Adv Microb Physiol. 1986;27:1–72. doi: 10.1016/s0065-2911(08)60303-3. [DOI] [PubMed] [Google Scholar]
  17. Kross J., Henner W. D., Hecht S. M., Haseltine W. A. Specificity of deoxyribonucleic acid cleavage by bleomycin, phleomycin, and tallysomycin. Biochemistry. 1982 Aug 31;21(18):4310–4318. doi: 10.1021/bi00261a021. [DOI] [PubMed] [Google Scholar]
  18. Morisaki N., Funabashi H., Shimazawa R., Furukawa J., Kawaguchi A., Okuda S., Iwasaki S. Effect of side-chain structure on inhibition of yeast fatty-acid synthase by cerulenin analogues. Eur J Biochem. 1993 Jan 15;211(1-2):111–115. doi: 10.1111/j.1432-1033.1993.tb19876.x. [DOI] [PubMed] [Google Scholar]
  19. Mutoh E., Mochizuki M., Ohta A., Takagi M. Inducible expression of a gene encoding an L41 ribosomal protein responsible for the cycloheximide-resistant phenotype in the yeast Candida maltosa. J Bacteriol. 1995 Sep;177(18):5383–5386. doi: 10.1128/jb.177.18.5383-5386.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nelissen B., Mordant P., Jonniaux J. L., De Wachter R., Goffeau A. Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett. 1995 Dec 18;377(2):232–236. doi: 10.1016/0014-5793(95)01380-6. [DOI] [PubMed] [Google Scholar]
  21. Powderly W. G. Resistant candidiasis. AIDS Res Hum Retroviruses. 1994 Aug;10(8):925–929. doi: 10.1089/aid.1994.10.925. [DOI] [PubMed] [Google Scholar]
  22. Prasad R., De Wergifosse P., Goffeau A., Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995 Mar;27(4):320–329. doi: 10.1007/BF00352101. [DOI] [PubMed] [Google Scholar]
  23. Rex J. H., Rinaldi M. G., Pfaller M. A. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995 Jan;39(1):1–8. doi: 10.1128/aac.39.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanglard D., Kuchler K., Ischer F., Pagani J. L., Monod M., Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995 Nov;39(11):2378–2386. doi: 10.1128/aac.39.11.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vanden Bossche H., Marichal P., Odds F. C. Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 1994 Oct;2(10):393–400. doi: 10.1016/0966-842x(94)90618-1. [DOI] [PubMed] [Google Scholar]
  26. Vuffray A., Durussel C., Boerlin P., Boerlin-Petzold F., Bille J., Glauser M. P., Chave J. P. Oropharyngeal candidiasis resistant to single-dose therapy with fluconazole in HIV-infected patients. AIDS. 1994 May;8(5):708–709. doi: 10.1097/00002030-199405000-00023. [DOI] [PubMed] [Google Scholar]
  27. Yadan J. C., Gonneau M., Sarthou P., Le Goffic F. Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases. J Bacteriol. 1984 Dec;160(3):884–888. doi: 10.1128/jb.160.3.884-888.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yokoyama K., Kaji H., Nishimura K., Miyaji M. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. J Gen Microbiol. 1990 Jun;136(6):1067–1075. doi: 10.1099/00221287-136-6-1067. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES