Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Oct;40(10):2375–2379. doi: 10.1128/aac.40.10.2375

Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin.

K B Patel 1, D Xuan 1, P R Tessier 1, J H Russomanno 1, R Quintiliani 1, C H Nightingale 1
PMCID: PMC163537  PMID: 8891147

Abstract

The bronchopulmonary and plasma pharmacokinetics of clarithromycin (CLA; 500 mg given twice daily for nine doses) or azithromycin (AZ; 500 mg for the first dose and then 250 mg once daily for four doses) were assessed in 41 healthy nonsmokers. Bronchoalveolar lavage was performed at 4, 8, 12, or 24 h after administration of the last dose. The concentrations (mean +/- standard deviation) of CLA, 14-hydroxyclarithromycin, and AZ were measured in plasma, epithelial lining fluid (ELF), and alveolar macrophage (AM) cells by high-performance liquid chromatography assay. The concentrations of CLA achieved in ELF were 34.02 +/- 5.16 micrograms/ml at 4 h, 20.63 +/- 4.49 micrograms/ml at 8 h, 23.01 +/- 11.9 micrograms/ml at 12 h, and 4.17 +/- 0.29 microgram/ml at 24 h, whereas at the same time points AZ concentrations remained below the limit of assay sensitivity (0.01 microgram/ml) for all but two subjects. The concentrations of CLA in the AM cells were significantly higher than those of AZ at 8 h (703 +/- 235 and 388 +/- 53 micrograms/ml, respectively). However, the ratio of the concentration in AM cells/concentration in plasma was significantly higher for AZ than for CLA for all time points because of the lower concentration of AZ in plasma. These results indicate that while AZ has higher tissue concentration to plasma ratios, as shown by other investigators, the absolute concentrations of CLA in AM cells and ELF are higher for up to 8 and 12 h, respectively, after administration of the last dose.

Full Text

The Full Text of this article is available as a PDF (175.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin D. R., Honeybourne D., Wise R. Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance. Antimicrob Agents Chemother. 1992 Jun;36(6):1176–1180. doi: 10.1128/aac.36.6.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin D. R., Wise R., Andrews J. M., Ashby J. P., Honeybourne D. Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J. 1990 Sep;3(8):886–890. [PubMed] [Google Scholar]
  3. Chu S., Wilson D. S., Deaton R. L., Mackenthun A. V., Eason C. N., Cavanaugh J. H. Single- and multiple-dose pharmacokinetics of clarithromycin, a new macrolide antimicrobial. J Clin Pharmacol. 1993 Aug;33(8):719–726. doi: 10.1002/j.1552-4604.1993.tb05613.x. [DOI] [PubMed] [Google Scholar]
  4. Conte J. E., Jr, Golden J. A., Duncan S., McKenna E., Zurlinden E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob Agents Chemother. 1995 Feb;39(2):334–338. doi: 10.1128/aac.39.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foulds G., Shepard R. M., Johnson R. B. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):73–82. doi: 10.1093/jac/25.suppl_a.73. [DOI] [PubMed] [Google Scholar]
  6. Fraschini F., Scaglione F., Demartini G. Clarithromycin clinical pharmacokinetics. Clin Pharmacokinet. 1993 Sep;25(3):189–204. doi: 10.2165/00003088-199325030-00003. [DOI] [PubMed] [Google Scholar]
  7. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hardy D. J., Swanson R. N., Rode R. A., Marsh K., Shipkowitz N. L., Clement J. J. Enhancement of the in vitro and in vivo activities of clarithromycin against Haemophilus influenzae by 14-hydroxy-clarithromycin, its major metabolite in humans. Antimicrob Agents Chemother. 1990 Jul;34(7):1407–1413. doi: 10.1128/aac.34.7.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Honeybourne D., Baldwin D. R. The site concentrations of antimicrobial agents in the lung. J Antimicrob Chemother. 1992 Sep;30(3):249–260. doi: 10.1093/jac/30.3.249. [DOI] [PubMed] [Google Scholar]
  10. Honeybourne D., Kees F., Andrews J. M., Baldwin D., Wise R. The levels of clarithromycin and its 14-hydroxy metabolite in the lung. Eur Respir J. 1994 Jul;7(7):1275–1280. doi: 10.1183/09031936.94.07071275. [DOI] [PubMed] [Google Scholar]
  11. Ishiguro M., Koga H., Kohno S., Hayashi T., Yamaguchi K., Hirota M. Penetration of macrolides into human polymorphonuclear leucocytes. J Antimicrob Chemother. 1989 Nov;24(5):719–729. doi: 10.1093/jac/24.5.719. [DOI] [PubMed] [Google Scholar]
  12. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
  13. Lalak N. J., Morris D. L. Azithromycin clinical pharmacokinetics. Clin Pharmacokinet. 1993 Nov;25(5):370–374. doi: 10.2165/00003088-199325050-00003. [DOI] [PubMed] [Google Scholar]
  14. Mandell G. L. Delivery of antibiotics by phagocytes. Clin Infect Dis. 1994 Nov;19(5):922–925. doi: 10.1093/clinids/19.5.922. [DOI] [PubMed] [Google Scholar]
  15. Panteix G., Guillaumond B., Harf R., Desbos A., Sapin V., Leclercq M., Perrin-Fayolle M. In-vitro concentration of azithromycin in human phagocytic cells. J Antimicrob Chemother. 1993 Jun;31 (Suppl E):1–4. doi: 10.1093/jac/31.suppl_e.1. [DOI] [PubMed] [Google Scholar]
  16. Prokesch R. C., Hand W. L. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982 Mar;21(3):373–380. doi: 10.1128/aac.21.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
  18. Saltini C., Hance A. J., Ferrans V. J., Basset F., Bitterman P. B., Crystal R. G. Accurate quantification of cells recovered by bronchoalveolar lavage. Am Rev Respir Dis. 1984 Oct;130(4):650–658. doi: 10.1164/arrd.1984.130.4.650. [DOI] [PubMed] [Google Scholar]
  19. Steinberg T. H. Cellular transport of drugs. Clin Infect Dis. 1994 Nov;19(5):916–921. doi: 10.1093/clinids/19.5.916. [DOI] [PubMed] [Google Scholar]
  20. Willcox M., Kervitsky A., Watters L. C., King T. E., Jr Quantification of cells recovered by bronchoalveolar lavage. Comparison of cytocentrifuge preparations with the filter method. Am Rev Respir Dis. 1988 Jul;138(1):74–80. doi: 10.1164/ajrccm/138.1.74. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES