Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Oct;40(10):2392–2398. doi: 10.1128/aac.40.10.2392

Penetration of brodimoprim into human neutrophils and intracellular activity.

P C Braga 1, M Dal Sasso 1, S Maci 1, G Bondiolotti 1, E Fonti 1, S Reggio 1
PMCID: PMC163540  PMID: 8891150

Abstract

The entry of an antibiotic into phagocytes is a prerequisite for its intracellular bioactivity against susceptible facultative or obligatory intracellular microorganisms. Brodimoprim is a dimethoxybenzylpyrimidine that has recently entered into clinical use, and its uptake into and elimination from human polymorphonuclear neutrophils (PMNs), together with its effects on normal phagocytic and antimicrobial mechanisms, have been investigated. Brodimoprim uptake by PMNs was determined by a velocity-gradient centrifugation technique under various experimental conditions and was expressed as the ratio of the intracellular to the extracellular drug concentration (C/E) in comparison with the C/E of trimethoprim, which was used as a control drug. After incubation with 7.5 micrograms of brodimoprim per ml, PMNs accumulated brodimoprim (C/E, 74.43 +/- 12.35 at 30 min) more avidly than trimethoprim (C/E, 20.97 +/- 6.61 at 30 min). The cellular uptake of brodimoprim was not affected by temperature, 2,4-dinitrophenol, or potassium fluoride and was increased with an increase in the pH of the medium. It was reduced in formaldehyde-killed PMNs. The efflux of brodimoprim was very rapid (46% after 5 min). The liposolubility of brodimoprim was about three times that of trimethoprim, as was the uptake. Therefore, a possible passive transmembrane diffusion mechanism might be proposed. Brodimoprim did not decrease either phagocytosis or phagocyte-mediated bactericidal activity, nor did it affect oxidative burst activity, as investigated by luminol-amplified chemiluminescence. On the basis of the pharmacokinetic data for brodimoprim, the concentration of 7.5 micrograms/ml was chosen as the highest concentration attainable in serum by oral therapy, and at this concentration of brodimoprim, the amount of drug that penetrated into PMNs was able to maintain its antimicrobial activity without interfering with the functions of the PMNs.

Full Text

The Full Text of this article is available as a PDF (245.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Stjernholm R. L., Steele R. H. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun. 1972 May 26;47(4):679–684. doi: 10.1016/0006-291x(72)90545-1. [DOI] [PubMed] [Google Scholar]
  2. Ascalone V. Assay of trimethoprim, sulfadiazine and its N4-acetyl metabolite in biological fluids by normal-phase high-performance liquid chromatography. J Chromatogr. 1981 Jun 12;224(1):59–66. doi: 10.1016/s0378-4347(00)80138-3. [DOI] [PubMed] [Google Scholar]
  3. Braga P. C., Dal Sasso M., Maci S., Allegra L., Fonti E., Ghessi A., Reggio S. Influence of brodimoprim on polymorphonuclear leukocyte phagocytosis and oxidant radical production. Chemotherapy. 1995 Sep-Oct;41(5):360–367. doi: 10.1159/000239368. [DOI] [PubMed] [Google Scholar]
  4. Braunsteiner A. R., Finsinger F. Brodimoprim: therapeutic efficacy and safety in the treatment of bacterial infections. J Chemother. 1993 Dec;5(6):507–511. [PubMed] [Google Scholar]
  5. Climax J., Lenehan T. J., Lambe R., Kenny M., Caffrey E., Darragh A. Interaction of antimicrobial agents with human peripheral blood leucocytes: uptake and intracellular localization of certain sulphonamides and trimethoprims. J Antimicrob Chemother. 1986 Apr;17(4):489–498. doi: 10.1093/jac/17.4.489. [DOI] [PubMed] [Google Scholar]
  6. Deysine M., Chua A., Gerboth A. Selective delivery of antibiotics to experimental infection by autologous white blood cells. Surg Forum. 1979;30:38–39. [PubMed] [Google Scholar]
  7. Duncker D., Ullmann U. Influence of various antimicrobial agents on the chemiluminescence of phagocytosing human granulocytes. Chemotherapy. 1986;32(1):18–24. doi: 10.1159/000238384. [DOI] [PubMed] [Google Scholar]
  8. Easmon C. S., Crane J. P. Cellular uptake of clindamycin and lincomycin. Br J Exp Pathol. 1984 Dec;65(6):725–730. [PMC free article] [PubMed] [Google Scholar]
  9. Fietta A., Boeri P., Colombo M. L., Merlini C., Gialdroni Grassi G. Uptake of flurithromycin by human polymorphonuclear phagocytes: partial characterization of the entry mechanism. Chemotherapy. 1992;38(6):433–440. doi: 10.1159/000239039. [DOI] [PubMed] [Google Scholar]
  10. Gaspari F., Taiocchi L., Pochobradsky M. G. Determination of brodimoprim and its hydroxy metabolite in human plasma, blood and urine by high-performance liquid chromatography. J Chromatogr. 1992 May 20;577(1):123–128. doi: 10.1016/0378-4347(92)80606-q. [DOI] [PubMed] [Google Scholar]
  11. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gmünder F. K., Seger R. A. Chronic granulomatous disease: mode of action of sulfamethoxazole/trimethoprim. Pediatr Res. 1981 Dec;15(12):1533–1537. doi: 10.1203/00006450-198112000-00017. [DOI] [PubMed] [Google Scholar]
  13. Gochin R., Kanfer I., Haigh J. M. Simultaneous determination of trimethoprim, sulphamethoxazole and N4-acetylsulphamethoxazole in serum and urine by high-performance liquid chromatography. J Chromatogr. 1981 Apr 10;223(1):139–145. doi: 10.1016/s0378-4347(00)80076-6. [DOI] [PubMed] [Google Scholar]
  14. Hand W. L., Corwin R. W., Steinberg T. H., Grossman G. D. Uptake of antibiotics by human alveolar macrophages. Am Rev Respir Dis. 1984 Jun;129(6):933–937. doi: 10.1164/arrd.1984.129.6.933. [DOI] [PubMed] [Google Scholar]
  15. Hand W. L., Hand D. L. Interactions of dirithromycin with human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1993 Dec;37(12):2557–2562. doi: 10.1128/aac.37.12.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hand W. L., Hand D. L., King-Thompson N. L. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1990 May;34(5):863–870. doi: 10.1128/aac.34.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hand W. L., King-Thompson N. L. Contrasts between phagocyte antibiotic uptake and subsequent intracellular bactericidal activity. Antimicrob Agents Chemother. 1986 Jan;29(1):135–140. doi: 10.1128/aac.29.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hand W. L., King-Thompson N. L., Johnson J. D. Influence of bacterial-antibiotic interactions on subsequent antimicrobial activity of alveolar macrophages. J Infect Dis. 1984 Feb;149(2):271–276. doi: 10.1093/infdis/149.2.271. [DOI] [PubMed] [Google Scholar]
  19. Hand W. L., King-Thompson N. L. Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts. Antimicrob Agents Chemother. 1990 Jun;34(6):1189–1193. doi: 10.1128/aac.34.6.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hand W. L., King-Thompson N., Holman J. W. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987 Oct;31(10):1553–1557. doi: 10.1128/aac.31.10.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Höger P. H., Seger R. A., Schaad U. B., Hitzig W. H. Chronic granulomatous disease: uptake and intracellular activity of fosfomycin in granulocytes. Pediatr Res. 1985 Jan;19(1):38–44. doi: 10.1203/00006450-198501000-00011. [DOI] [PubMed] [Google Scholar]
  22. Ishiguro M., Koga H., Kohno S., Hayashi T., Yamaguchi K., Hirota M. Penetration of macrolides into human polymorphonuclear leucocytes. J Antimicrob Chemother. 1989 Nov;24(5):719–729. doi: 10.1093/jac/24.5.719. [DOI] [PubMed] [Google Scholar]
  23. Jacobs R. F., Wilson C. B. Intracellular penetration and antimicrobial activity of antibiotics. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):13–20. doi: 10.1093/jac/12.suppl_c.13. [DOI] [PubMed] [Google Scholar]
  24. Jacobs R. F., Wilson C. B., Laxton J. G., Haas J. E., Smith A. L. Cellular uptake and intracellular activity of antibiotics against Haemophilus influenzae type b. J Infect Dis. 1982 Feb;145(2):152–159. doi: 10.1093/infdis/145.2.152. [DOI] [PubMed] [Google Scholar]
  25. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
  26. Klempner M. S., Styrt B. Clindamycin uptake by human neutrophils. J Infect Dis. 1981 Nov;144(5):472–479. doi: 10.1093/infdis/144.5.472. [DOI] [PubMed] [Google Scholar]
  27. Knowles D. J. Uptake of erythromycin by McCoy and HEp2 cells: its dependence on cellular pH gradients. J Antimicrob Chemother. 1988 Jun;21(6):765–772. doi: 10.1093/jac/21.6.765. [DOI] [PubMed] [Google Scholar]
  28. Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987 Dec;31(12):1904–1908. doi: 10.1128/aac.31.12.1904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kornguth M. L., Kunin C. M. Uptake of antibiotics by human erythrocytes. J Infect Dis. 1976 Feb;133(2):175–184. doi: 10.1093/infdis/133.2.175. [DOI] [PubMed] [Google Scholar]
  30. Laufen H., Wildfeuer A., Räder K. Uptake of antimicrobial agents by human polymorphonuclear leucocytes. Arzneimittelforschung. 1985;35(7):1097–1099. [PubMed] [Google Scholar]
  31. Lehrer R. I., Cline M. J. Interaction of Candida albicans with human leukocytes and serum. J Bacteriol. 1969 Jun;98(3):996–1004. doi: 10.1128/jb.98.3.996-1004.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Leijh P. C., van den Barselaar M. T., Daha M. R., van Furth R. Participation of immunoglobulins and complement components in the intracellular killing of Staphylococcus aureus and Escherichia coli by human granulocytes. Infect Immun. 1981 Sep;33(3):714–724. doi: 10.1128/iai.33.3.714-724.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Leijh P. C., van den Barselaar M. T., Dubbeldeman-Rempt I., van Furth R. Kinetics of intracellular killing of Staphylococcus aureus and Escherichia coli by human granulocytes. Eur J Immunol. 1980 Oct;10(10):750–757. doi: 10.1002/eji.1830101005. [DOI] [PubMed] [Google Scholar]
  34. Leijh P. C., van den Barselaar M. T., van Zwet T. L., Daha M. R., van Furth R. Requirement of extracellular complement and immunoglobulin for intracellular killing of micro-organisms by human monocytes. J Clin Invest. 1979 Apr;63(4):772–784. doi: 10.1172/JCI109362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Maderazo E. G., Kripas C. J., Breaux S. P., Woronick C. L., Moore R. Pitfalls in testing drug uptake by leukocytes using radiolabeled drugs and an explanation of conflicting results with clindamycin. Chemotherapy. 1989;35(2):123–129. doi: 10.1159/000238658. [DOI] [PubMed] [Google Scholar]
  36. Mandell G. L. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest. 1973 Jul;52(7):1673–1679. doi: 10.1172/JCI107348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. McLeod T. F., Manyan D. R., Yunis A. A. The cellular transport of chloramphenicol and thiamphenicol. J Lab Clin Med. 1977 Aug;90(2):347–353. [PubMed] [Google Scholar]
  38. Melby K., Midtvedt T. Effects of some antibacterial agents on the phagocytosis of 32P-labelled Escherichia coli by human polymorphonuclear cells. Acta Pathol Microbiol Scand B. 1980 Apr;88(2):103–106. doi: 10.1111/j.1699-0463.1980.tb02613.x. [DOI] [PubMed] [Google Scholar]
  39. Melby K., Midtvedt T. The effect of eight antibacterial agents on the phagocytosis of 32P-labelled Escherichia coli by rat polymorphonuclear cells. Scand J Infect Dis. 1977;9(1):9–12. doi: 10.3109/inf.1977.9.issue-1.03. [DOI] [PubMed] [Google Scholar]
  40. Pascual A., García I., Conejo C., Perea E. J. Uptake and intracellular activity of fluconazole in human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1993 Feb;37(2):187–190. doi: 10.1128/aac.37.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Patterson-Delafield J., Lehrer R. I. A simple microscopic method for identifying and quantitating phagocytic cells in vitro. J Immunol Methods. 1977;18(3-4):377–379. doi: 10.1016/0022-1759(77)90191-0. [DOI] [PubMed] [Google Scholar]
  42. Peinado J. M., McManus K. T., Myers R. D. Rapid method for micro-analysis of endogenous amino acid neurotransmitters in brain perfusates in the rat by isocratic HPLC-EC. J Neurosci Methods. 1986 Nov;18(3):269–276. doi: 10.1016/0165-0270(86)90013-0. [DOI] [PubMed] [Google Scholar]
  43. Perry D. K., Hand W. L., Edmondson D. E., Lambeth J. D. Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. J Immunol. 1992 Oct 15;149(8):2749–2758. [PubMed] [Google Scholar]
  44. Prokesch R. C., Hand W. L. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982 Mar;21(3):373–380. doi: 10.1128/aac.21.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Raghoebar M., Huisman J. A., van den Berg W. B., van Riel P. L., van Ginneken C. A. Chloroquine interaction with inflammatory human polymorphonuclear leucocytes. Agents Actions. 1988 Jul;24(3-4):331–342. doi: 10.1007/BF02028291. [DOI] [PubMed] [Google Scholar]
  46. Robinson P., Wakefield D., Breit S. N., Easter J. F., Penny R. Chemiluminescent response to pathogenic organisms: normal human polymorphonuclear leukocytes. Infect Immun. 1984 Feb;43(2):744–752. doi: 10.1128/iai.43.2.744-752.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Seger R. A., Baumgartner S., Tiefenauer L. X., Gmünder F. K. Chronic granulomatous disease: effect of sulfamethoxazole/trimethoprim on neutrophil microbicidal function. Helv Paediatr Acta. 1981;36(6):579–588. [PubMed] [Google Scholar]
  48. Siegel J. P., Remington J. S. Effect of antimicrobial agents on chemiluminescence of human polymorphonuclear leukocytes in response to phagocytosis. J Antimicrob Chemother. 1982 Dec;10(6):505–515. doi: 10.1093/jac/10.6.505. [DOI] [PubMed] [Google Scholar]
  49. Spreux-Varoquaux O., Chapalain J. P., Cordonnier P., Advenier C., Pays M., Lamine L. Determination of trimethoprim, sulphamethoxazole and its N4-acetyl metabolite in biological fluids by high-performance liquid chromatography. J Chromatogr. 1983 May 13;274:187–199. doi: 10.1016/s0378-4347(00)84422-9. [DOI] [PubMed] [Google Scholar]
  50. Steinberg T. H., Hand W. L. Effects of phagocytosis on antibiotic and nucleoside uptake by human polymorphonuclear leukocytes. J Infect Dis. 1984 Mar;149(3):397–403. doi: 10.1093/infdis/149.3.397. [DOI] [PubMed] [Google Scholar]
  51. Stockis A., Borzio F., Deroubaix X., Gaspari F., Jeanbaptiste B., Lebacq E., Lins R., Pavesio D., Pelozi G. C., Rosillon D. Pharmacokinetics of brodimoprim in special populations. J Chemother. 1993 Dec;5(6):480–487. [PubMed] [Google Scholar]
  52. Then R. L., Böhni E., Angehrn P., Plozza-Nottebrock H., Stoeckel K. New analogs of trimethoprim. Rev Infect Dis. 1982 Mar-Apr;4(2):372–377. doi: 10.1093/clinids/4.2.372. [DOI] [PubMed] [Google Scholar]
  53. Vosbeck K., James P. R., Zimmermann W. Antibiotic action on phagocytosed bacteria measured by a new method for determining viable bacteria. Antimicrob Agents Chemother. 1984 Jun;25(6):735–741. doi: 10.1128/aac.25.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Weidekamm E. Pharmacokinetics of brodimoprim. J Chemother. 1993 Dec;5(6):475–479. [PubMed] [Google Scholar]
  55. Welch W. D., Davis D., Thrupp L. D. Effect of antimicrobial agents on human polymorphonuclear leukocyte microbicidal function. Antimicrob Agents Chemother. 1981 Jul;20(1):15–20. doi: 10.1128/aac.20.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wilkinson P. J., Reeves D. S. Tissue penetration of trimethoprim and sulphonamides. J Antimicrob Chemother. 1979 Nov;5(B):159–168. doi: 10.1093/jac/5.supplement_b.159. [DOI] [PubMed] [Google Scholar]
  57. Woods P. B., Robinson M. L. An investigation of the comparative liposolubilities of beta-adrenoceptor blocking agents. J Pharm Pharmacol. 1981 Mar;33(3):172–173. doi: 10.1111/j.2042-7158.1981.tb13743.x. [DOI] [PubMed] [Google Scholar]
  58. el Benna J., Pasquier C., Labro M. T. Quinine uptake by human polymorphonuclear neutrophils. Antimicrob Agents Chemother. 1991 Jul;35(7):1474–1478. doi: 10.1128/aac.35.7.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES