Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Nov;40(11):2443–2446. doi: 10.1128/aac.40.11.2443

Reduced accumulation of drug in Candida krusei accounts for itraconazole resistance.

K Venkateswarlu 1, D W Denning 1, N J Manning 1, S L Kelly 1
PMCID: PMC163554  PMID: 8913443

Abstract

Due to intrinsic resistance Candida krusei is emerging as a systemic pathogen in AIDS patients undergoing fluconazole therapy, but acquired resistance to itraconazole has not been studied biochemically. We report here studies on the basis for azole resistance and sterol composition in C. krusei. An itraconazole-resistant isolate showed reduced susceptibility to azole drugs in in vitro growth inhibition studies. Accumulation of 14 alpha-methyl-3,6-diol under azole treatment was associated with growth arrest. In vitro ergosterol biosynthesis and type II binding studies suggested no alteration in the affinity to azole drugs of the target enzyme, the cytochrome P-450 sterol 14 alpha-demethylase, in the resistant isolate. Resistance was associated with a decreased intracellular content of drug in the resistant isolate.

Full Text

The Full Text of this article is available as a PDF (197.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baily G. G., Perry F. M., Denning D. W., Mandal B. K. Fluconazole-resistant candidosis in an HIV cohort. AIDS. 1994 Jun;8(6):787–792. doi: 10.1097/00002030-199406000-00010. [DOI] [PubMed] [Google Scholar]
  2. Ballard S. A., Ellis S. W., Kelly S. L., Troke P. F. A novel method for studying ergosterol biosynthesis by a cell-free preparation of Aspergillus fumigatus and its inhibition by azole antifungal agents. J Med Vet Mycol. 1990;28(4):335–344. [PubMed] [Google Scholar]
  3. Ballard S. A., Kelly S. L., Ellis S. W., Troke P. F. Interaction of microsomal cytochrome P-450 isolated from Aspergillus fumigatus with fluconazole and itraconazole. J Med Vet Mycol. 1990;28(4):327–334. [PubMed] [Google Scholar]
  4. Fling M. E., Kopf J., Tamarkin A., Gorman J. A., Smith H. A., Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991 Jun;227(2):318–329. doi: 10.1007/BF00259685. [DOI] [PubMed] [Google Scholar]
  5. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  6. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. Inhibition of 14 alpha-sterol demethylase activity in Candida albicans Darlington does not correlate with resistance to azole. J Med Vet Mycol. 1987 Oct;25(5):329–333. [PubMed] [Google Scholar]
  7. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans. J Gen Microbiol. 1986 Sep;132(9):2421–2431. doi: 10.1099/00221287-132-9-2421. [DOI] [PubMed] [Google Scholar]
  8. Hitchcock C. A. Resistance of Candida albicans to azole antifungal agents. Biochem Soc Trans. 1993 Nov;21(4):1039–1047. doi: 10.1042/bst0211039. [DOI] [PubMed] [Google Scholar]
  9. Joseph-Horne T., Hollomon D., Loeffler R. S., Kelly S. L. Altered P450 activity associated with direct selection for fungal azole resistance. FEBS Lett. 1995 Oct 30;374(2):174–178. doi: 10.1016/0014-5793(95)01102-k. [DOI] [PubMed] [Google Scholar]
  10. Joseph-Horne T., Hollomon D., Loeffler R. S., Kelly S. L. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother. 1995 Jul;39(7):1526–1529. doi: 10.1128/aac.39.7.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joseph-Horne T., Manning N. J., Hollomon D., Kelly S. L. Defective sterol delta 5(6) desaturase as a cause of azole resistance in Ustilago maydis. FEMS Microbiol Lett. 1995 Mar 15;127(1-2):29–34. doi: 10.1111/j.1574-6968.1995.tb07445.x. [DOI] [PubMed] [Google Scholar]
  12. Kelly S. L., Lamb D. C., Corran A. J., Baldwin B. C., Kelly D. E. Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun. 1995 Feb 27;207(3):910–915. doi: 10.1006/bbrc.1995.1272. [DOI] [PubMed] [Google Scholar]
  13. Lamb D. C., Corran A., Baldwin B. C., Kwon-Chung J., Kelly S. L. Resistant P45051A1 activity in azole antifungal tolerant Cryptococcus neoformans from AIDS patients. FEBS Lett. 1995 Jul 17;368(2):326–330. doi: 10.1016/0014-5793(95)00684-2. [DOI] [PubMed] [Google Scholar]
  14. Lees N. D., Broughton M. C., Sanglard D., Bard M. Azole susceptibility and hyphal formation in a cytochrome P-450-deficient mutant of Candida albicans. Antimicrob Agents Chemother. 1990 May;34(5):831–836. doi: 10.1128/aac.34.5.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marichal P., Gorrens J., Coene M. C., Le Jeune L., Vanden Bossche H. Origin of differences in susceptibility of Candida krusei to azole antifungal agents. Mycoses. 1995 Mar-Apr;38(3-4):111–117. doi: 10.1111/j.1439-0507.1995.tb00032.x. [DOI] [PubMed] [Google Scholar]
  16. Marichal P., Vanden Bossche H. Mechanisms of resistance to azole antifungals. Acta Biochim Pol. 1995;42(4):509–516. [PubMed] [Google Scholar]
  17. Neyfakh A. A., Bidnenko V. E., Chen L. B. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4781–4785. doi: 10.1073/pnas.88.11.4781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Norman A. W., Spielvogel A. M., Wong R. G. Polyene antibiotic - sterol interaction. Adv Lipid Res. 1976;14:127–170. [PubMed] [Google Scholar]
  19. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  20. Parkinson T., Falconer D. J., Hitchcock C. A. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob Agents Chemother. 1995 Aug;39(8):1696–1699. doi: 10.1128/aac.39.8.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pfaller M. A., Barry A. L. Evaluation of a novel colorimetric broth microdilution method for antifungal susceptibility testing of yeast isolates. J Clin Microbiol. 1994 Aug;32(8):1992–1996. doi: 10.1128/jcm.32.8.1992-1996.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prasad R., De Wergifosse P., Goffeau A., Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995 Mar;27(4):320–329. doi: 10.1007/BF00352101. [DOI] [PubMed] [Google Scholar]
  23. Sanglard D., Kuchler K., Ischer F., Pagani J. L., Monod M., Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995 Nov;39(11):2378–2386. doi: 10.1128/aac.39.11.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shimokawa O., Nakayama H., Nakyama H. Phenotypes of Candida albicans sterol mutants deficient in delta 8,7-isomerization or 5-desaturation. J Med Vet Mycol. 1991;29(1):53–56. [PubMed] [Google Scholar]
  25. Vanden Bossche H. Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. Curr Top Med Mycol. 1985;1:313–351. doi: 10.1007/978-1-4613-9547-8_12. [DOI] [PubMed] [Google Scholar]
  26. Vanden Bossche H., Marichal P., Gorrens J., Geerts H., Janssen P. A. Mode of action studies. Basis for the search of new antifungal drugs. Ann N Y Acad Sci. 1988;544:191–207. doi: 10.1111/j.1749-6632.1988.tb40404.x. [DOI] [PubMed] [Google Scholar]
  27. Venkateswarlu K., Denning D. W., Manning N. J., Kelly S. L. Comparison of D0870, a new triazole antifungal agent, to fluconazole for inhibition of Candida albicans cytochrome P-450 by using in vitro assays. Antimicrob Agents Chemother. 1996 Jun;40(6):1382–1386. doi: 10.1128/aac.40.6.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Venkateswarlu K., Denning D. W., Manning N. J., Kelly S. L. Resistance to fluconazole in Candida albicans from AIDS patients correlated with reduced intracellular accumulation of drug. FEMS Microbiol Lett. 1995 Sep 15;131(3):337–341. doi: 10.1111/j.1574-6968.1995.tb07797.x. [DOI] [PubMed] [Google Scholar]
  29. Wardle H. M., Law D., Moore C. B., Mason C., Denning D. W. In vitro activity of D0870 compared with those of other azoles against fluconazole-resistant Candida spp. Antimicrob Agents Chemother. 1995 Apr;39(4):868–871. doi: 10.1128/aac.39.4.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Watson P. F., Rose M. E., Ellis S. W., England H., Kelly S. L. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1170–1175. doi: 10.1016/0006-291x(89)91792-0. [DOI] [PubMed] [Google Scholar]
  31. Woods R. A. Nystatin-resistant mutants of yeast: alterations in sterol content. J Bacteriol. 1971 Oct;108(1):69–73. doi: 10.1128/jb.108.1.69-73.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. vanden Bossche H., Marichal P., Odds F. C., Le Jeune L., Coene M. C. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 1992 Dec;36(12):2602–2610. doi: 10.1128/aac.36.12.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES