Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Nov;40(11):2452–2454. doi: 10.1128/aac.40.11.2452

Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis.

A Meier 1, P Sander 1, K J Schaper 1, M Scholz 1, E C Böttger 1
PMCID: PMC163556  PMID: 8913445

Abstract

Quantitative susceptibility testing of clinical isolates of streptomycin-resistant Mycobacterium tuberculosis demonstrated that there is a close correlation between the molecular resistance mechanism and the in vitro activity of streptomycin: mutations in rpsL were mainly associated with high-level resistance, mutations in rrs were associated with an intermediate level of resistance, and streptomycin-resistant isolates with wild-type rpsL and rrs exhibited a low-level resistance phenotype. Investigations of streptomycin-resistant isolates with wild-type rpsL and rrs revealed that (i) there is no cross-resistance to other drugs and (ii) a permeability barrier may contribute to resistance, because resistance was significantly lowered in the presence of a membrane-active agent.

Full Text

The Full Text of this article is available as a PDF (176.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. N., Noller H. F. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA. J Mol Biol. 1989 Aug 5;208(3):457–468. doi: 10.1016/0022-2836(89)90509-3. [DOI] [PubMed] [Google Scholar]
  2. Böttger E. C. Resistance to drugs targeting protein synthesis in mycobacteria. Trends Microbiol. 1994 Oct;2(10):416–421. doi: 10.1016/0966-842x(94)90622-x. [DOI] [PubMed] [Google Scholar]
  3. Douglass J., Steyn L. M. A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates. J Infect Dis. 1993 Jun;167(6):1505–1506. doi: 10.1093/infdis/167.6.1505. [DOI] [PubMed] [Google Scholar]
  4. Finken M., Kirschner P., Meier A., Wrede A., Böttger E. C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993 Sep;9(6):1239–1246. doi: 10.1111/j.1365-2958.1993.tb01253.x. [DOI] [PubMed] [Google Scholar]
  5. Heym B., Honoré N., Truffot-Pernot C., Banerjee A., Schurra C., Jacobs W. R., Jr, van Embden J. D., Grosset J. H., Cole S. T. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994 Jul 30;344(8918):293–298. doi: 10.1016/s0140-6736(94)91338-2. [DOI] [PubMed] [Google Scholar]
  6. Honoré N., Cole S. T. Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother. 1994 Feb;38(2):238–242. doi: 10.1128/aac.38.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hui J., Gordon N., Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother. 1977 May;11(5):773–779. doi: 10.1128/aac.11.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kapur V., Li L. L., Hamrick M. R., Plikaytis B. B., Shinnick T. M., Telenti A., Jacobs W. R., Jr, Banerjee A., Cole S., Yuen K. Y. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995 Feb;119(2):131–138. [PubMed] [Google Scholar]
  9. Meier A., Kirschner P., Bange F. C., Vogel U., Böttger E. C. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother. 1994 Feb;38(2):228–233. doi: 10.1128/aac.38.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mizuguchi Y., Udou T., Yamada T. Mechanism of antibiotic resistance in Mycobacterium intracellulare. Microbiol Immunol. 1983;27(5):425–431. doi: 10.1111/j.1348-0421.1983.tb00601.x. [DOI] [PubMed] [Google Scholar]
  11. Morris S., Bai G. H., Suffys P., Portillo-Gomez L., Fairchok M., Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis. 1995 Apr;171(4):954–960. doi: 10.1093/infdis/171.4.954. [DOI] [PubMed] [Google Scholar]
  12. Nair J., Rouse D. A., Bai G. H., Morris S. L. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol. 1993 Nov;10(3):521–527. doi: 10.1111/j.1365-2958.1993.tb00924.x. [DOI] [PubMed] [Google Scholar]
  13. Powers T., Noller H. F. Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J Mol Biol. 1994 Jan 7;235(1):156–172. doi: 10.1016/s0022-2836(05)80023-3. [DOI] [PubMed] [Google Scholar]
  14. Ruusala T., Kurland C. G. Streptomycin preferentially perturbs ribosomal proofreading. Mol Gen Genet. 1984;198(2):100–104. doi: 10.1007/BF00328707. [DOI] [PubMed] [Google Scholar]
  15. Sander P., Meier A., Böttger E. C. Ribosomal drug resistance in mycobacteria. Res Microbiol. 1996 Jan-Feb;147(1-2):59–67. doi: 10.1016/0923-2508(96)80205-1. [DOI] [PubMed] [Google Scholar]
  16. Shaila M. S., Gopinathan K. P., Ramakrishnan T. Protein synthesis in Mycobacterium tuberculosis H37Rv and the effect of streptomycin in streptomycin-susceptible and -resistant strains. Antimicrob Agents Chemother. 1973 Sep;4(3):205–213. doi: 10.1128/aac.4.3.205. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES