Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Nov;40(11):2459–2467. doi: 10.1128/aac.40.11.2459

Effects of isoniazid on ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on production of secreted proteins.

F Bardou 1, A Quémard 1, M A Dupont 1, C Horn 1, G Marchal 1, M Daffé 1
PMCID: PMC163558  PMID: 8913447

Abstract

Isoniazid (INH), one of the most effective antimycobacterial drugs, specifically inhibits, at an early stage of its action, the biosynthesis of mycolic acids, specific mycobacterial lipids which play a central role in the cell envelope architecture of mycobacteria. In the present study, the consequences of the action of INH on the cell morphology of Mycobacterium tuberculosis and Mycobacterium aurum were examined. Electron microscopy was used to observe bacilli which were previously treated with either subinhibitory concentrations of INH or the MIC of the drug, leading to a decrease of 20 to 35% (by weight) of their mycolic acid contents. The earlier effect of INH on the ultrastructure of mycobacteria, as revealed by negative staining of bacilli, was the alteration of the bacterial poles; this event was observed prior to the bacteriostatic action of the drug and was accompanied by a release of material from the poles into the extracellular medium. In a later stage of the drug's action, cell deformation occurred and more extracellular material was seen. The material released following the action of the drug on susceptible mycobacterial cells was identified as being almost exclusively composed of proteins. Labeling of amino acids with 35S prior to and during the action of INH on M. aurum and subsequent analysis of the labeled proteins led to the conclusion that they consisted of secreted proteins which were up to 20-fold oversecreted in the presence of the drug. Competitive enzyme-linked immunosorbent assay with the secreted 45/47-kDa antigen complex of M. tuberculosis demonstrated up to 20-fold oversecretion of these proteins. Taken together, the production of oversecreted proteins following the decrease of the cell envelope mycolate content by INH strongly suggests that mycolic acids may act as a barrier in the export of proteins secreted by mycobacteria.

Full Text

The Full Text of this article is available as a PDF (485.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. B., Ljungqvist L., Hasløv K., Bentzon M. W. MPB 64 possesses 'tuberculosis-complex'-specific B- and T-cell epitopes. Scand J Immunol. 1991 Sep;34(3):365–372. doi: 10.1111/j.1365-3083.1991.tb01558.x. [DOI] [PubMed] [Google Scholar]
  2. Andersen A. B., Yuan Z. L., Hasløv K., Vergmann B., Bennedsen J. Interspecies reactivity of five monoclonal antibodies to Mycobacterium tuberculosis as examined by immunoblotting and enzyme-linked immunosorbent assay. J Clin Microbiol. 1986 Mar;23(3):446–451. doi: 10.1128/jcm.23.3.446-451.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  4. Daffé M., Lanéelle M. A., Asselineau C., Lévy-Frébault V., David H. Intérêt taxonomique des acides gras des mycobactéries: proposition d'une méthode d'analyse. Ann Microbiol (Paris) 1983 Sep-Oct;134B(2):241–256. [PubMed] [Google Scholar]
  5. Dessen A., Quémard A., Blanchard J. S., Jacobs W. R., Jr, Sacchettini J. C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638–1641. doi: 10.1126/science.7886450. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Lapchine L., Asselineau C. Présence d'une bactériophage chez Mycobacterium phlei. Ann Microbiol (Paris) 1981 Mar-Apr;132(2):129–139. [PubMed] [Google Scholar]
  8. Laqueyrerie A., Militzer P., Romain F., Eiglmeier K., Cole S., Marchal G. Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex. Infect Immun. 1995 Oct;63(10):4003–4010. doi: 10.1128/iai.63.10.4003-4010.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lemassu A., Daffé M. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J. 1994 Jan 15;297(Pt 2):351–357. doi: 10.1042/bj2970351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lemassu A., Ortalo-Magné A., Bardou F., Silve G., Laneélle M. A., Daffé M. Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology. 1996 Jun;142(Pt 6):1513–1520. doi: 10.1099/13500872-142-6-1513. [DOI] [PubMed] [Google Scholar]
  11. Ljungqvist L., Worsaae A., Heron I. Antibody responses against Mycobacterium tuberculosis in 11 strains of inbred mice: novel monoclonal antibody specificities generated by fusions, using spleens from BALB.B10 and CBA/J mice. Infect Immun. 1988 Aug;56(8):1994–1998. doi: 10.1128/iai.56.8.1994-1998.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MIDDLEBROOK G. Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am Rev Tuberc. 1952 Jun;65(6):765–767. [PubMed] [Google Scholar]
  13. McNeil M. R., Brennan P. J. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol. 1991 May;142(4):451–463. doi: 10.1016/0923-2508(91)90120-y. [DOI] [PubMed] [Google Scholar]
  14. Ortalo-Magné A., Dupont M. A., Lemassu A., Andersen A. B., Gounon P., Daffé M. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology. 1995 Jul;141(Pt 7):1609–1620. doi: 10.1099/13500872-141-7-1609. [DOI] [PubMed] [Google Scholar]
  15. Ortalo-Magné A., Lemassu A., Lanéelle M. A., Bardou F., Silve G., Gounon P., Marchal G., Daffé M. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol. 1996 Jan;178(2):456–461. doi: 10.1128/jb.178.2.456-461.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quémard A., Lacave C., Lanéelle G. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother. 1991 Jun;35(6):1035–1039. doi: 10.1128/aac.35.6.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quémard A., Mazères S., Sut A., Lanéelle G., Lacave C. Certain properties of isoniazid inhibition of mycolic acid synthesis in cell-free systems of M. aurum and M. avium. Biochim Biophys Acta. 1995 Jan 3;1254(1):98–104. doi: 10.1016/0005-2760(94)00174-w. [DOI] [PubMed] [Google Scholar]
  18. Quémard A., Sacchettini J. C., Dessen A., Vilcheze C., Bittman R., Jacobs W. R., Jr, Blanchard J. S. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995 Jul 4;34(26):8235–8241. doi: 10.1021/bi00026a004. [DOI] [PubMed] [Google Scholar]
  19. Romain F., Laqueyrerie A., Militzer P., Pescher P., Chavarot P., Lagranderie M., Auregan G., Gheorghiu M., Marchal G. Identification of a Mycobacterium bovis BCG 45/47-kilodalton antigen complex, an immunodominant target for antibody response after immunization with living bacteria. Infect Immun. 1993 Feb;61(2):742–750. doi: 10.1128/iai.61.2.742-750.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHAEFER W. B. Effect of isoniazid on the dehydrogenase activity of Mycobacterium tuberculosis. J Bacteriol. 1960 Feb;79:236–245. doi: 10.1128/jb.79.2.236-245.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takayama K. Selective action of isoniazid on the synthesis of cell wall mycolates in mycobacteria. Ann N Y Acad Sci. 1974 May 10;235(0):426–438. doi: 10.1111/j.1749-6632.1974.tb43281.x. [DOI] [PubMed] [Google Scholar]
  22. Takayama K., Wang L., David H. L. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1972 Jul;2(1):29–35. doi: 10.1128/aac.2.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takayama K., Wang L., Merkal R. S. Scanning electron microscopy of the H37Ra strain of Mycobacterium tuberculosis exposed to isoniazid. Antimicrob Agents Chemother. 1973 Jul;4(1):62–65. doi: 10.1128/aac.4.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Winder F. G., Collins P. B. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol. 1970 Sep;63(1):41–48. doi: 10.1099/00221287-63-1-41. [DOI] [PubMed] [Google Scholar]
  25. Winder F. G., Rooney S. A. The effects of isoniazid on the carbohydrates of Mycobacterium tuberculosis BCG. Biochem J. 1970 Apr;117(2):355–368. doi: 10.1042/bj1170355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]
  27. Zhang Y., Young D. B. Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. Trends Microbiol. 1993 Jun;1(3):109–113. doi: 10.1016/0966-842x(93)90117-a. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES